SAPO-34的改性及其在合成气制低碳烯烃中的应用
作者单位:

太原理工大学

中图分类号:

TQ630

基金项目:

山西省自然科学基金(202103021224073); 国家自然科学基金重点项目(U1510203); 山西省重点研发计划(201803D421011)。


Modification of SAPO-34 and its application in syngas conversion to light olefins
Author:
Affiliation:

1.State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology,Taiyuan,030024;2.Shanxi,PR China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对金属氧化物与分子筛组成的双功能催化剂中的分子筛进行改性,可进一步提高合成气制低碳烯烃(STO)反应性能。采用水热法合成不同金属Me(Ce、Zn、Zr)及不同Zr掺杂量改性的SAPO-34分子筛,并与GaZrOx金属氧化物物理混合制备GaZrOx/SAPO-34双功能催化剂,考察其催化STO反应性能。采用XRD、TEM、SEM-EDS、BET、FTIR、NH3-TPD、XPS对分子筛表征发现,不同金属改性的分子筛均合成了具有CHA结构的SAPO-34,掺杂Zr提高了分子筛的相对结晶度,减小了颗粒尺寸。Zr掺杂量为1.0%(n(ZrO2)与n(Al2O3)的物质的量比为1:100)时合成的1.0%ZrSP-34分子筛颗粒尺寸最小,平均粒径为0.53 μm,且强酸量适中(1.34 mmol/g);掺杂2% Zr时导致多余的Zr以ZrO2形式存在于分子筛表面,覆盖了强酸中心。与未改性的SAPO-34相比,采用掺杂1.0% Zr合成的1.0%ZrSP-34制备GaZrOx/1.0%ZrSP-34双功能催化剂,可使CO转化率从14.2%增加到21.2%,低碳烯烃选择性从71.0%提高至82.4%,且该催化剂反应60 h后未出现明显失活。

    Abstract:

    The catalytic performance of syngas to light olefins (STO) can be further enhanced by zeolite modification in bifunctional catalyst composed of metal oxide and zeolite. In this work, SAPO-34 zeolites were hydrothermally synthesized by modification of different metals Me (Ce, Zn, Zr) and various Zr doping contents, after physically mixed with GaZrOx metal oxide, the catalytic performance of prepared GaZrOx/SAPO-34 for STO was studied. XRD, TEM, SEM-EDS, BET, FT-IR, NH3-TPD and XPS were selected to characterize the zeolites. It is found that the synthesized SAPO-34 samples all possess CHA structure, the doping of Zr increased the relative crystallinity and reduced the particle sizes of the zeolites. When the doping content of Zr is 1.0% (n(ZrO2):n(Al2O3) = 1 : 100), the synthesized 1.0%ZrSP-34 zeolite exhibits the smallest particle size, with an average particle size of 0.53 μm and a moderate amount of strong acid (1.34 mmol/g). The doping of 2% Zr results in the formation of ZrO2 on the surface of zeolite, covering the strong acid center. Compared with the unmodified SAPO-34 sample, the 1.0%ZrSP-34 prepared by doping of 1.0% Zr combined with GaZrOx enhanced the CO conversion from 14.2% to 21.2%, with the selectivity of light olefins improved from 71.0% to 82.4%, moreover, this catalyst shows almost no deactivation after a reaction time of 60 h.

    参考文献
    [1]. TORRES GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.
    [2]. ZHONG L, YU F, AN Y, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87.
    [3]. XING Y(邢宇), ZHAO C X(赵晨曦), JIA G P(贾高鹏), et al. Fe/K/Mg-O-Al catalysts for direct production of lower olefins from syngas[J]. Fine Chemicals (精细化工), 2020, 37(05): 968-975.
    [4]. JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
    [5]. ZHOU W (周伟),CHENG K (成康),ZHANG Q H(张庆红), et al. Relay catalysis in the conversion of syngas (in Chinese)[J]. Chinese Science Bulletin(科学通报), 2021, 66(10): 1157-1169.
    [6]. LI G, JIAO F, PAN X, et al. Role of SAPO-18 acidity in direct syngas conversion to light olefins[J]. ACS Catalysis, 2020, 10(21): 12370-12375.
    [7]. CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie-International Edition, 2016, 55(15): 4725-4728.
    [8]. LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718.
    [9]. YANG G, MENG F, ZHANG P, et al. Effects of preparation method and precipitant on Mn–Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. New Journal of Chemistry, 2021, 45: 7967-7976.
    [10]. MENG F, LI X, ZHANG P, et al. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catalysis Today, 2020, 368: 118-125.
    [11]. WANG M, KANG J, XIONG X, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2020, 371: 85-92.
    [12]. FU Y, NI Y, CHEN Z, et al. Achieving high conversion of syngas to aromatics[J]. Journal of Energy Chemistry, 2021, 66: 597-602.
    [13]. ZHANG P, MENG F, LI X, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn–Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science Technology, 2019, 9(20): 5577-5581.
    [14]. CHENG K, ZHOU W, KANG J, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347.
    [15]. LI N, JIAO F, PAN X, et al. High-quality gasoline directly from syngas by dual metal oxide–zeolite (OX-ZEO) catalysis[J]. Angewandte Chemie International Edition, 2019, 58(22): 7400-7404.
    [16]. YANG M, FAN D, WEI Y X, et al. Recent progress in methanol-to-olefins (MTO) catalysts[J]. Advanced Materials, 2019, 31(50): 1902181.
    [17]. PAN X, JIAO F, MIAO D, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond fischer-tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609.
    [18]. GAO B, YANG M, QIAO Y, et al. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction[J]. Catalysis Science Technology, 2016, 6(20): 7569-7578.
    [19]. LI J F(李俊汾), FAN W B(樊卫斌), DONG M(董梅), et al. Synthesis and MTO catalytic performance of SAPO-34[J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2011, 32(3): 765-771.
    [20]. YANG L L(杨浪浪), WANG W L(王伟林), MENG F H(孟凡会), et al. Advances in zeolite of bifunctional catalyst for direct hydrogenation of CO/CO2[J]. Fine Chemicals (精细化工), 2020, 37(8): 1561-1566,1614.
    [21]. HU X, YUAN L, CHENG S, et al. GeAPSO-34 molecular sieves: Synthesis, characterization and methanol-to-olefins performance[J]. Catalysis Communications, 2019, 123: 38-43.
    [22]. KIM T H, GIM M Y, HWANG G, et al. Effects of Ce/Al molar ratio in Ce-incorporated mesoporous SAPO-34 on the physicochemical property and catalytic performance in the selective production of light olefins via conversion of chloromethane[J]. Applied Catalysis A: General, 2021, 615: 118061.
    [23]. SUN C, WANG Y, WANG Z, et al. Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction[J]. Comptes Rendus Chimie, 2018, 21(1): 61-70.
    [24]. AGHAEI E, HAGHIGHI M, PAZHOHNIYA Z, et al. One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene[J]. Microporous and Mesoporous Materials, 2016, 226: 331-343.
    [25]. DONG X, LIU C, MIAO Q, et al. Comparison of catalytic performance of metal-modified SAPO-34: a molecular simulation study[J]. Journal of Molecular Modeling, 2019, 25(9): 270.
    [26]. SEDIGHI M, GHASEMI M, SADEQZADEH M, et al. Thorough study of the effect of metal-incorporated SAPO-34 molecular sieves on catalytic performances in MTO process[J]. Powder Technology, 2016, 291: 131-139.
    [27]. ZHANG P, MA L, MENG F, et al. Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrOx combined with SAPO-34[J]. Applied Catalysis B: Environmental, 2021, 305: 121042.
    [28]. TONG M, HONDO E, GAPU CHIZEMA L, et al. Hydrogenation of CO2 to LPG over CuZnZr/MeSAPO-34 catalysts[J]. New Journal of Chemistry, 2020, 44(22): 9328-9336.
    [29]. ZHANG S C, WEN Z Y, YANG L, et al. Controllable synthesis of hierarchical porous petal-shaped SAPO-34 zeolite with excellent DTO performance[J]. Microporous and Mesoporous Materials, 2019, 274: 220-226.
    [30]. TONG M, CHIZEMA L G, CHANG X, et al. Tandem catalysis over tailored ZnO-ZrO2/MnSAPO-34 composite catalyst for enhanced light olefins selectivity in CO2 hydrogenation[J]. Microporous and Mesoporous Materials, 2021, 320: 111105.
    [31]. YANG M, TIAN P, WANG C, et al. A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity[J]. Chemical Communications, 2014, 50(15): 1845-1847.
    [32]. XIN M D(忻睦迪), XING E H(邢恩会), OU Y Y(欧阳颖), et al. Influence of status of Zn species in Zn/ZSM-5 on its catalytic performance[J]. Petroleum Processing and Petrochemicals (石油炼制与化工), 2019, 50(12): 42-50.
    [33]. LONG H, JIN F, XIONG G, et al. Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading[J]. Microporous and Mesoporous Materials, 2014, 198: 29-34.
    [34]. YAO J, RONG Y, GAO Z, et al. Metal–organic framework-assisted synthesis of Zr-modified SAPO-34 zeolites with hierarchical porous structure for the catalytic transformation of methanol to olefins[J]. Catalysis Science Technology, 2022, 12: 894-905.
    [35]. LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718.
    [36]. ZHU Y, CHUAH G,JAENICKE S. Al-free Zr-zeolite beta as a regioselective catalyst in the meerwein–ponndorf–verley reaction[J]. Chemical Communications, 2003, (21): 2734-2735.
    [37]. PANIAGUA M, MORALES G, MELERO J A, et al. Understanding the role of Al/Zr ratio in Zr-Al-Beta zeolite: Towards the one-pot production of GVL from glucose[J]. Catalysis Today, 2021, 367: 228-238.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁晓彤,王丽娜,李忠,孟凡会. SAPO-34的改性及其在合成气制低碳烯烃中的应用[J].精细化工,2022,39(9):

复制
分享
文章指标
  • 点击次数:153
  • 下载次数: 700
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-09
  • 最后修改日期:2022-05-03
  • 录用日期:2022-05-17
  • 在线发布日期: 2022-08-15
文章二维码