低CO2选择性的合成气制轻烯烃双功能催化剂
作者单位:

1.四川大学化工学院;2.四川煤碳产业集团有限责任公司

中图分类号:

O643

基金项目:

国家自然科学基金(22178236,21878194)


Bifunction catalyst for syngas to light olefins with low CO2 selectivity
Author:
Affiliation:

1.College of Chemical Engineering,Sichuan University;2.Sichuan Coal Industry Group Limited Liability Company

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为开发高活性、高收率的合成气制低碳烯烃(STO)双功能催化剂,通过共沉淀法制备非化学计量尖晶石Zn-Cr-Al氧化物,对其织构性质、晶体结构、形貌特征以及表面电荷性质等进行研究。结果表明添加过量锌能够促进晶体粒径减小,表面氧空位增多。其中Zn/(Cr+Al)摩尔比为1.25时锌含量较为适宜,将其与SAPO-34沸石分子筛结合为双功能催化剂用于STO性能研究。在进气n(H2):n(CO)=2:1,3000 mL/(gcat·h),3.2 MPa,400 ℃反应条件下,实现46.9% CO转化率,C2-4烯烃收率高达15.9%,高于大部分已有文献报道(8~14%),特别是副产物CO2选择性仅29.2%,低于普遍报道的40~50% CO2选择性。并且催化剂运行100 h后活性良好,稳定的催化性能使其具有工业应用价值。

    Abstract:

    The non-stoichiometric spinel Zn-Cr-Al oxide (ZCA-1.25) was prepared by co-precipitation method in order to develop a high activity and high yield bifunctional catalyst for synthesis of light olefin from syngas (STO), and its texture, crystal structure, morphology and surface charge properties were investigated. The results show that the addition of excessive zinc promotes the reduction of crystal grain size and the increase of surface oxygen vacancies. The zinc content is suitable when the Zn/(Cr+Al) mole ratio is 1.25, with high specific surface area and abundant oxygen vacancies, which is combined with SAPO-34 zeolite molecular sieve as a bifunctional catalyst to evaluate the catalytic performance of STO reaction directly. Under the reaction conditions of inlet n(H2):n(CO)=2:1, 3000 mL/(gcat·h), 3.2 MPa, 400 ℃, the CO conversion of 46.9% was achieved, and the light olefin yield was as high as 15.9%, higher than most of the existing literature reports (8~12%), especially the selectivity of by-product CO2 was only 29.2%, lower than the commonly reported 40~50% CO2 selectivity. It also provides an insight into inhibiting CO2 selectivity to improve the yield of target products. In addition, the catalyst has good activity and no carbon deposition after running for 100 h, therefore the stable catalytic performance makes it have the potential for industrial application.

    参考文献
    [1]. BAO J, YANG G, YONEYAMA Y, et al. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions[J]. ACS Catalysis, 2019, 9 (4): 3026-3053.
    [2]. LIU Y T, DENG D H, BAO X H. Catalysis for selected C1 chemistry[J]. Chem, 2020, 6 (10): 2497-2514.
    [3]. AN Y L, LIN T J, YU F, et al. Advances in direct production of value-added chemicals via syngas conversion[J]. Science China Chemistry, 2017, 60 (7): 887-903.
    [4]. GALVIS T, De P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3 (9): 2130-2149.
    [5]. JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351 (6277): 1065-1068.
    [6]. ZHU Y F, PAN X L, JIAO F, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7 (4): 2800-2804.
    [7]. JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018, 57 (17): 4692-4696.
    [8]. LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018, 9 (20): 4708-4718.
    [9]. SU J J, WANG D, WANG Y D, et al. Direct conversion of syngas into light olefins over Zirconium-doped Indium (Ⅲ) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10 (7): 1536-1541.
    [10].NI Y M, LIU Y, CHEN Z Y, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9 (2): 1026-1032.
    [11].SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/ALPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10 (1): 1297.
    [12].VERGER L, DARGAUD O, ROUSSE G, et al. Spectroscopic properties of Cr3+ in the spinel solid solution ZnAl2-xCrxO4[J]. Physics and Chemistry of Minerals, 2016, 43 (1): 33-42.
    [13].PIERO G D, TRIFIRO F, VACCARI A. Non-stoicheiometric Zn-Cr spinel as active phase in the catalytic synthesis of methanol[J]. Journal of the Chemical Society, Chemical Communications, 1984, (10): 656-658.
    [14].LI N, JIAO F, PAN X, et al. Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion[J]. ACS Catalysis, 2019, 9 (2): 960-966.
    [15].BATTISTONI C, PAPARAZZO E, DUMOND Y, et al. X-ray photoelectron spectra of the spinel systems CdCrxIn2?xS4[J]. Solid State Communications, 1983, 46 (4): 333-336.
    [16].TAN L, YANG G, YONEYAMA Y, et al. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Applied Catalysis A: General, 2015, 505: 141-149.
    [17].MA S C, HUANG S D, LIU Z P. Dynamic coordination of cations and catalytic selectivity on Zinc-Chromium oxide alloys during syngas conversion[J]. Nature Catalysis, 2019, 2 (8): 671-677.
    [18].WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3 (10): e1701290.
    [19].MCCLUSKEY M D. Defects in advanced electronic materials and novel low dimensional structures[M]. Woodhead Publishing: 2018.
    [20].HAW J F, SONG W G, MARCUS D M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research, 2003, 36 (5): 317-326.
    [21].WANG W, JIANG Y, HUNGER M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy[J]. Catalysis Today, 2006, 113 (1): 102-114.
    [22].ZHU M H, WACHS I E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: A review[J]. ACS Catalysis, 2016, 6 (2): 722-732.
    [23].BOCCUZZI F, GARRONE E, ZECCHINA A, et al. Infrared study of ZnO surface properties: Ii. H2-CO interaction at room temperature[J]. Journal of Catalysis, 1978, 51 (2): 160-168.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄伟东,郑和平,郭玉静,毛璐瑶,袁浩,唐建华.低CO2选择性的合成气制轻烯烃双功能催化剂[J].精细化工,2022,39(9):

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 578
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-06-07
  • 录用日期:2022-06-08
  • 在线发布日期: 2022-08-15
文章二维码