废铅膏湿法回收过程中铜的电化学行为及净化
作者:
作者单位:

北京化工大学新危险化学品评估及事故鉴定基础研究实验室

中图分类号:

TQ019????


Electrochemical behavior and removal of copper in the hydrometallurgical recycling process of waste lead-acid battery
Author:
Affiliation:

1.National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis,Beijing University of Chemical Technology;2.National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis,Beijing University of Chemical Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对甲基磺酸湿法回收废铅酸蓄电池过程中典型杂质Cu2+的电化学行为及其净化方法进行了研究。研究结果表明,Cu2+在电解过程中优先于Pb2+析出,造成电解铅的纯度下降,同时使还原铅的电流效率下降、能耗增大。Cu2+的存在改变了Pb2+的成核机理,从而使得Pb2+的还原电位正移。针对甲基磺酸铅体系的特点,基于铅粉置换铜原理,提出采用流态法净化工艺代替传统的搅拌置换法,解决了搅拌法单次除铜净化铅粉消耗量大、净化成本高、效率低下等缺点。在最佳除铜工艺条件下:铅粉粒径为100 ~ 150目,温度为20 ℃,流速8 ~ 10 m/h,填充的铅粉柱高0.6 ~ 0.7 cm,采用流态化除铜工艺对实际废铅膏进行净化处理,杂质Cu2+去除率能够达到90%以上。

    Abstract:

    The electrochemical behavior and purification method and principle of typical Cu2+ impurity in the recovery process of waste lead paste based on Methanesulfonic acid (MSA) were studied. The research results show that Cu2+ is preferentially precipitated over Pb2+ in the electrolysis process, resulting in a decrease in the purity of electrolytic lead, a decrease in the current efficiency of lead reduction and an increase in energy consumption. The existence of Cu2+ changes the nucleation mechanism of Pb2+, thus making the reduction potential of Pb2+ shift positively. Based on the principle of removing copper with lead powder, the fluidized purification process is proposed to replace the traditional stirring replacement method according to the characteristics of lead methanesulfonate system, which solves the problems of the large consumption of lead powder, high purification cost, and low efficiency. When the particle size of lead powder is 100 ~ 150 mesh, the temperature is 20 ℃, the flow rate is 8 ~ 10 m/h, and the height of the filled lead powder column is 0.6 ~ 0.7 cm. The removal rate of Cu2+ can reach more than 90% in the purification process of actual leaching solution from waste lead paste.

    参考文献
    [1] LI W(李伟), HU Y(胡勇). 动力铅酸电池的发展现状及其使用寿命的研究进展[J].Manufacture Information Engineering of China (中国制造业信息化), 2011, 40(07): 70-72.
    [2] LI W F(李卫锋), JIANG Z Z(蒋湛张). 废铅酸蓄电池铅再生技术现状及进展[J].China Nonferrous Metallurgy (中国有色冶金), 2011, 6(66): 53-56.
    [3] GONZáLEZ D. The refining of lead by the Betts process(Review)[J] Journal of Applied Electrochemistry. 1991, 21(3): 189-202.
    [4] FERRACIN L C, CHáCON S, DAVOGLIO R, et al. Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electrohydrometallurgical process[J]. Hydrometallurgy, 2002, 65(2): 137-144.
    [5] ZHANG P Q, THOMAS J, YU P. Electrochemical characterization of the effects of impurities and organic additives in lead electrowinning from fluoborate electrolyte[J]. Hydrometallurgy, 2001, 61(3): 207-221.
    [6] LI M, YANG J, LIANG S, et al. Review on clean recovery of discarded spent lead-acid battery and trends of recycled products[J]. Journal of Power Sources, 2019, 436(1):1-15.
    [7] WU Z, DREISINGER D B, URCH H, et al. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA)[J]. Hydrometallurgy, 2014, 142: 23-35.
    [8] JIN B, DREISINGER D B. A green electrorefining process for production of pure lead from methanesulfonic acid medium[J]. Separation and Purification Technology, 2016, 170: 199-207.
    [9] Feng Q C, Wen S M, Wang Y J, et al. Dissolution kinetics of cerussite in an alternative leaching reagent for lead[J]. Chemical Papers, 2015, 69(3): 440-447.
    [10] LANG Q C(郎庆成), WANG Y L(王云立),XIAO X B(肖向彬) et al. 新型绿色废铅锡合金高效提取技术研究[J].Recyclable Resources and Circular Economy (再生资源与循环经济), 2019, 12(7): 24-29.
    [11] CHANG C(常聪), LI Y G(李有刚), CHEN Y M(陈永明) et al. 甲基磺酸体系铅电沉积工艺研究[J].Mining and Metallurgical Engineering (矿冶工程), 2020, 6(1): 105-108.
    [12] YANG S H(杨声海), WU Y Z(吴彦增), SUN Y W(孙彦伟) et al.甲基磺酸体系电沉积铅过程中阳极反应的电化学研究[J].Hydrometallurgy of china (湿法冶金), 2018, 37(5): 356-361.
    [13] GAD‐ALLAH A G, SALIH S A, MOKHTAR A A, et al. Effect of As, Cu and Sb impurities on performance of Pb‐Ca‐Sn grids of lead‐acid batteries[J]. Materialwissenschaft Und Werkstofftechnik, 2013, 44(10): 832-838.
    [14] Yu W, Zhang P, Yang J, et al. A low-emission strategy to recover lead compound products directly from spent lead-acid battery paste: Key issue of impurities removal[J]. Journal of Cleaner Production, 2019, 210: 1534-1544.
    [15] JIAN Y J(翦英军). 铅电解过程中杂质的行为及控制[M].Hunan: 湖南有色金属, 2001(A1).
    [16] WEI M(魏民). 杂质铜在铅电解中的电化学行为及控制[J].Nonferrous Metals (有色金属), 1992, 5(2): 32-39.
    [17] JIN F F(金风帆). 铅酸蓄电池故障常见问题解答(二) [J].Auto Application (汽车运用), 2002, 11(121): 43-44.
    [18] BAN S(班双), JIANG X Y(蒋晓云), YI Y N(易亚男) et al. 酸性条件下镍电解液净化除铜实验研究[J].Nonferrous Metallurgical Equipment (有色设备), 2021, 35(05): 25-28.
    [19] AHMADI M K, GHAFARI M, ATKINSON J D, et al. A copper removal process forwater based upon biosynthesis of yersiniabactin, a metal-binding natural product[J]. Chemical Engineerig Journal, 2016, 306: 772-776.
    [20] BAO H W(包红伟). 氯化锰锰溶液铁粉置换除铜实验研究[J]. China Steel Focus (冶金管理), 2020(15): 26-27.
    [21] FU G(付光), LIU J C(刘俊场), QU H T(曲洪涛) et al. 硫酸锌溶液净化除杂研究现状及趋势[J]. Yunnan Metallurgy (云南冶金), 2020, 49(2): 33-37.
    [22] YAN M J(闫明江). 从锌冶炼废渣中综合回收铟的生产工艺及实践[J].Shanxi Metallurgy (山西冶金), 2021, 44(2): 2.
    [23] XIA D(夏栋), JIANG X Y(蒋晓云), WANG C(王冲) et al. 铜电解液的净化试验研究[J].Hydrometallurgy of China (湿法冶金), 2019, 38(5): 371-374.
    [24] ZHOU P(周萍), LI D M(李冬梅), CHEN Z(陈卓). 湿法炼锌置换柱式净化装置传质过程 (英文)[J].Transactions of Nonferrous Metals Society of China(中国有色金属学报: 英文版), 2014, (8): 2660-2664.
    [25] RAO M D, MESHRAM A, VERMA H R, et al. Study to enhance cementation of impurities from zinc leach liquor by modifying the shape and size of zinc dust[J]. Hydrometallurgy, 2020, 195: 105352.
    [26] KHUDR M S, IBRAHIM Y M E, GARFORTH A et al. On copper removal from aquatic media using simultaneous and sequential iron-perlite composites[J]. Journal of Water Process Engineering, 2021, 40: 101842.
    [27] SUN B(孙备), ZHANG B(张斌), YANG C H(阳春华) et al. 有色冶金净化过程建模与优化控制问题探讨[J].Automatica Sinica(自动化学报), 2017, 43(6): 880-892.
    [28] BAO C J(包崇军), WEI X(魏霞), ZHANG H W(张候文) et al. 浅析锌粉加入方式对湿法炼锌净化除杂的影响[J]. Mining and Metallurgy(矿冶), 2009, 18(3): 3.
    [29] B Scharifker G H. Theoretical and Experimental Studies of Multiple Nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
    [30] CHENG J(程进). 钼粉颗粒团聚现象及量化方法[J]. China Molybdenum Industry(中国钼业), 2016, 40(6): 50-53.
    [31] JIN Y H(金洋华), WU S X(吴世学).铁粉表面置换镀铜的动力学[J]. Materials Reports (材料导报), 2007(S1): 226-229.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭力玮,熊颖,李纪鹏,孙艳芝,潘军青,陈咏梅.废铅膏湿法回收过程中铜的电化学行为及净化[J].精细化工,2023,40(2):

复制
分享
文章指标
  • 点击次数:95
  • 下载次数: 579
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-25
  • 最后修改日期:2022-08-14
  • 录用日期:2022-08-15
  • 在线发布日期: 2023-01-17
  • 出版日期: 2022-09-30
文章二维码