单分散聚乙二醇的高效合成
作者:
作者单位:

重庆理工大学药学与生物工程学院

中图分类号:

O622.3;TQ423.2+1

基金项目:

重庆市科委自然科学基金面上项目(cstc2020jcyj-msxmX0153);重庆市教委科学技术研究项目(KJQN202001113);重庆理工大学研究生创新项目(gzlcx20223343)


Highly efficient synthesis of monodisperse polyethylene glycols
Author:
Affiliation:

1.School of Pharmacy &2.Bioengineering, Chongqing University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以廉价的2~4聚的聚乙二醇为原料,开发了一种基于环硫酸酯的单端延伸法合成单分散聚乙二醇的方法。以苄基作为保护基,重复利用环硫酸酯的亲核开环、水解反应对苄基化聚乙二醇的羟基端进行延伸,以55%~86%的产率得到苄基化的6~16聚的单分散聚乙二醇衍生物,最后通过催化氢化脱去苄基,以95%~99%的产率得到6~16聚的单分散聚乙二醇。中间体及终产物的结构均经NMR和MS确证。反应进程易于监控,反应效率高,无与目标产物的聚合度接近的聚乙二醇杂质,中间体及终产物易于分离纯化。

    Abstract:

    A method for the synthesis of monodisperse polyethylene glycols by single chain extension strategy using cheap polyethylene glycols with degree of polymerization of 2 to 4 as raw materials based on macrocyclic sulfates is developed. With benzyl as the protecting group, the hydroxyl end of benzylated polyethylene glycols was extended by repeated nucleophilic ring opening of macrocyclic sulfate and subsequent hydrolysis reaction,and the benzylated monodisperse polyethylene glycol derivatives with degree of polymerization of 6 to 16 were obtained in 55%~86% yield. Finally, monodisperse polyethylene glycols with degree of polymerization of 6 to 16 were obtained in 95%~99% yield through debenzylation by catalytic hydrogenation. The structure of the intermediates and the final products were confirmed by NMR and MS. This method has the following advantages: 1) The reaction process is easy to monitor. 2) The reaction efficiency is high, and no polyethylene glycol impurities with degree of polymerization close to that of the target products were generated, so the intermediates and the final products are easy to be separated and purified.

    参考文献
    [1] WU T, CHEN K, HE S, et al. Drug development through modification of small molecular drugs with monodisperse poly(ethylene glycol)s[J]. Organic Process Research
    [2] REN Z T, CUI J, SUN Q, et al. Polyethylene glycol-modified nanoscale conjugated polymer for the photothermal therapy of lung cancer[J]. Nanotechnology, 2022, 23: 33(45).
    [3] SHAH N, HUSSAIN M, REHAN T, et al. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application[J]. Current Pharmaceutical Design, 2022, 28: 352-367.
    [4] MARUYAMA M, TOJO H, TOI K, et al. Effect of doxorubicin release rate from polyethylene glycol-modified liposome on anti-tumor activity in B16-BL6 tumor-bearing mice[J]. Journal of Pharmaceutical Sciences, 2022, 111: 293-297.
    [5] PINTO M, SILVA V, BARREIRO S, et al. Brain drug delivery and neurodegenerative diseases: polymeric PLGA-based nanoparticles as a forefront platform[J]. Ageing Research Reviews, 2022, 79: 101658.
    [6] KO J H, MAYNARD H D. A guide to maximizing the therapeutic potential of protein-polymer conjugates by rational design[J]. Chemical Society Reviews, 2018, 47: 8998-9014.
    [7] XIAO Q, DRAPER S R E, SMITH M S, et al. Influence of PEGylation on the strength of protein surface salt bridges[J]. ACS Chemical Biology, 2019, 7: 1652-1659.
    [8] ROTHER M, NUSSBAUMER M G, RENGGLI K, et al. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science[J]. Chemical Society Reviews, 2016, 45: 6213-6249.
    [9] WANG Y, HU W, DING B, et al. cRGD mediated redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for efficiently intracellular antitumor drug delivery[J]. Colloids and Surfaces. B, Biointerfaces, 2020, 194: 111195.
    [10] THI T T H, PILKINGTON E H, NGUYEN D H, et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG Immunogenicity in drug delivery and bioconjugation[J]. Polymers, 2020, 12: 298.
    [11] LI Y, GAO J, WANG S, et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery[J]. Journal of Medicinal Chemistry, 2022, 65(3): 2078-2090.
    [12] KOLATE A, BARADIA D, PATIL S, et al. PEG - a versatile conjugating ligand for drugs and drug delivery systems[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2014, 192: 67-81.
    [13] PIPE S W, MONTGOMERY R R, PRATT K P, et al. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A[J]. Blood, 2016, 128: 2007-2016.
    [14] DING M, LIU W and GREF R. Nanoscale MOFs: from synthesis to drug delivery and theranostics applications[J]. Advanced Drug Delivery Reviews, 2022, 190: 114496.
    [15] YAN D M (鄢冬茂), CAI W R (蔡文蓉), YIN G Q (殷国强), et al. Preparation and properties of PEG/APS-SiO2/O-CNTs phase change materials with enhanced thermal conductivity[J]. Fine Chemicals (精细化工), 2021, 38(04): 729-735.
    [16] HERZBERGER J, NIEDERER K. N, POHLIT H, et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation[J]. Chemical Reviews, 2016, 116: 2170-2243.
    [17] GABERC-POREKAR V, ZORE I, PODOBNIK B, et al. Obstacles and pitfalls in the PEGylation of therapeutic proteins[J]. Current Opinion in Drug Discovery
    [18] YU Z, BO S, WANG H, et al. Application of monodisperse PEGs in pharmaceutics: monodisperse polidocanols[J]. Molecular Pharmaceutics, 2017, 14: 3473-3479.
    [19] WAWRO A M, MURAOKA T, KATO M, et al. Multigram chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate[J]. Organic Chemistry Frontiers, 2016, 3: 1524-1534.
    [20] KHANAL A and FANG S. Solid phase stepwise synthesis of polyethylene glycols[J]. Chemistry, 2017, 23: 15133-15142.
    [21] MIKESELL L, ERIYAGAMA D N A M, YIN Y, et al. Stepwise PEG synthesis featuring deprotection and coupling in one pot[J]. Beilstein Journal of Organic Chemistry, 2021, 17: 2976-2982.
    [22] ZHANG H, LI X, SHI Q, et al. Highly efficient synthesis of monodisperse poly(ethylene glycols) and derivatives through macrocyclization of oligo(ethylene glycols)[J]. Angewandte Chemie (International Ed. in English), 2015, 54: 3763-3767.
    [23] LI Y, QIU X and JIANG Z X. Macrocyclic Sulfates as versatile building blocks in the synthesis of monodisperse poly(ethylene glycol)s and monofunctionalized derivatives[J]. Organic Process Research
    [24] XIA G, LI Y, YANG Z, et al. Development of a scalable process for α-Amino-ω-methoxyl- dodecaethylene Glycol[J]. Organic Process Research
    [25] WAN Z, LI Y, BO S, et al. Amide bond-containing monodisperse polyethylene glycols beyond 10 000 Da[J]. Organic
    [26] LV X, ZHENG X, YANG Z, et al. One-pot synthesis of monodisperse dual-functionalized polyethylene glycols through macrocyclic sulfates[J]. Organic
    [27] LI Y, WANG X, CHEN Y, et al. Monodisperse polyethylene glycol "brushes" with enhanced lipophilicity, and thermo and plasma stability[J]. Chemical Communications, 2019, 55: 1895-1898.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨慧宇,王雯丽,李长庚.单分散聚乙二醇的高效合成[J].精细化工,2023,40(9):

复制
分享
文章指标
  • 点击次数:215
  • 下载次数: 675
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-19
  • 最后修改日期:2023-03-17
  • 录用日期:2023-03-23
  • 在线发布日期: 2023-08-17
文章二维码