磁性纳米片的制备及功能化应用研究进展
作者:
作者单位:

1.中国石油大学(北京) 非常规油气科学技术研究院;2.中国石油长庆油田分公司 油气工艺研究院

中图分类号:

TB383

基金项目:

国家自然科学基金(52074320)


Research progress of preparation and functional application of magnetic nanosheets
Author:
Affiliation:

1.Unconventional Petroleum Research Institute,China University of Petroleum Beijing;2.Oil and Gas Technology Research Institute,PetroChina Changqing Oilfield Company,Xi'3.'4.an

Fund Project:

National Natural Science Foundation of China (52074320)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [86]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    磁性纳米片由于其独特的性质,在磁共振成像、微波吸收、催化剂、电池、吸附净化等领域受到广泛关注。本文归纳了磁性纳米片的制备方法以及功能化应用方向,阐述了不同制备方法对于磁性纳米片的形貌、大小以及厚度的影响。归纳了磁性纳米片的合成机理以及性能调控因素,为其规模化制备提供理论支持。此外,着重介绍了磁性纳米片在各个领域的功能化应用进展,总结出磁性纳米片基本性质及功能化改性后的作用行为对进一步应用的意义。最后,对磁性纳米片研究中亟待解决的问题以及未来的研究方向作出展望。

    Abstract:

    Because of their unique properties, magnetic nanosheets have attracted extensive attention in magnetic resonance imaging, microwave absorption, catalysts, batteries, adsorption purification, and other fields. In this paper, the preparation methods and functional application direction of magnetic nanosheets were summarized. The effects of different preparation methods on the morphology, size, and thickness of magnetic nanosheets were described, the synthesis mechanism and performance control factor were summarized to provide theoretical support for their large-scale preparation. In addition, the functional application progress of magnetic nanosheets in various fields was emphatically introduced. The significance of basic properties and the functional modification of magnetic nanosheets for further application were summarized. Finally, the problems to be solved urgently in the research of magnetic nanosheets and the future research direction were prospected.

    参考文献
    [1]XUE F, ZHU S, TIAN Q, et al. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors [J]. Journal of Colloid and Interface Science, 2023, 629: 554-562.
    [2]ZARE M, SARKATI M. Chitosan-functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery [J]. Polymers for Advanced Technologies, 2021, 32(10): 4094-4100.
    [3]BINAYMOTLAGH R, HAGHIGHI F, ABOUTALEBI F, et al. Selective chemotherapy and imaging of colorectal and breast cancer cells by a modified MUC-1 aptamer conjugated to a poly(ethylene glycol)-dimethacrylate coated Fe3O4–AuNCs nanocomposite [J]. New Journal of Chemistry, 2019, 43(1): 238-248.
    [4]LIU J, WANG H, LI X, et al. Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-in-water emulsion [J]. Fuel, 2017, 189: 79-87.
    [5]JAVADIAN S, KHALILIFARD M, SADRPOOR S. Functionalized graphene oxide with core-shell of Fe3O4@oliec acid nanospheres as a recyclable demulsifier for effective removal of emulsified oil from oily wastewater [J]. Journal of Water Process Engineering, 2019, 32: 100961.
    [6]GáLVEZ-VERGARA A, FRESCO-CALA B, CáRDENAS S. Switchable Pickering emulsions stabilized by polystyrene-modified magnetic nanoparticles [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 606:125462.
    [7]HAJDU V, MURANSZKY G, PREKOB A, et al. Palladium decorated nickel and zinc ferrite spinel nanoparticles applied in aniline synthesis-development of magnetic catalysts [J]. Journal of Materials Research and Technology, 2022, 19: 3624-3633.
    [8]JAHANI G, MALMIR M, HERAVI M. Catalytic Oxidation of Alcohols over a Nitrogen-and Sulfur-Doped Graphitic Carbon Dot-Modified Magnetic Nanocomposite [J]. Industrial Engineering Chemistry Research, 2022, 61(5): 2010-2022.
    [9]HABIBI-YANGJEH A, SHEKOFTEH-GOHARI M. Synthesis of magnetically recoverable visible-light-induced photocatalysts by combination of Fe3O4/ZnO with BiOI and polyaniline [J]. Progress in Natural Science: Materials International, 2019, 29(2): 145-155.
    [10]ALGAMDI M, ALSHAHRANI A, ALSUHYBANI M. Chitosan grafted tetracarboxylic functionalized magnetic nanoparticles for removal of Pb(II) from an aqueous environment [J]. International Journal of Biological Macromolecules, 2023, 225: 1517-1528.
    [11]SARAVANAN A, PONNUSAMY S, MUTHUSAMY G, et al. Adsorption Characteristics of Magnetic Nanoparticles Coated Mixed Fungal Biomass for Toxic Cr(VI) ions in Aquatic Environment [J]. Chemosphere, 2021, 267: 129226.
    [12]LU T, ZHANG S, QI D, et al. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments [J]. Applied Surface Science, 2017, 396: 1604-1612.
    [13]ZHANG W, XIAO H, ZHU L, et al. Template-free solvothermal synthesis and magnetic properties of novel single-crystalline magnetite nanoplates [J]. Journal of Alloys and Compounds, 2009, 477: 736-738.
    [14]LI C, WEI R, XU Y, et al. Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth [J]. Nano Research, 2015, 7(4): 536-543.
    [15]ZHANG Q, CHEN R, GONG J, et al. Single-crystalline Fe3O4 nanosheets: Facile sonochemical synthesis, evaluation and magnetic properties [J]. Journal of Alloys and Compounds, 2013, 577: 528-532.
    [16]REYES-REYES M, áVILA-NI?O J, LóPEZ-SANDOVAL R, et al. Thermal stability of magnetite hexagonal nanoflakes coated with carbon layers [J]. Journal of Physics D Applied Physics, 2016, 49(13): 135301.
    [17]REYES-REYES M, HERNáNDEZ-ARRIAGA D, LóPEZ-SANDOVAL R. Carbon-coated hexagonal magnetite nanoflakes production by spray CVD of alcohols in mixture with water [J]. Materials Research Express, 2014, 1(4): 045607.
    [18]LAKSHMI N, TAMBE P, PANDA B, et al. Surface modified iron oxide (Fe3O4) nanosheets reinforced PVDF nanocomposites: influence on morphology, thermal and magnetic properties [J]. Plastics Rubber and Composites, 2022, 51(4): 205-216.
    [19]LAMER V, DINEGAR R. Nucleation Rate and the Kinetic of Particle Growth [J]. Journal of the American Chemical Society,1950, 72: 4847-4854.
    [20]REISS H. The Growth of Uniform Colloidal Dispersions [J]. Journal of Chemical Physics, 1951, 19(4): 482-487.
    [21]MURRAY C, NORRIS D, BAWENDI M. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
    [22]FAN N, MA X, LIU X, et al. The formation of a layer of Fe3O4 nanoplates between two carbon films [J]. Carbon, 2007, 45(9): 1839-1846.
    [23]CHEN L, ZHAO C, ZHOU Y, et al. Controlled synthesis of Fe3O4 nanosheets via one-step pyrolysis of EDTA ferric sodium salt [J]. Journal of Alloys and Compounds, 2010, 504(2): L46-L50.
    [24]ZHOU Z, ZHU X, WU D, et al. Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects [J]. Chemistry of Materials, 2015, 27(9): 3505-3515.
    [25]ZHOU Z, ZHAO Z, ZHANG H, et al. Interplay between Longitudinal and Transverse Contrasts in Fe3O4 Nanoplates with (111) Exposed Surfaces [J]. ACS Nano, 2014, 8(8): 7976-7985.
    [26]LIU X, CAO K, CHEN Y, et al. Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals [J]. Materials Chemistry and Physics, 2017, 192: 339-348.
    [27]CHEN L, XU X, WAN L, et al. Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors [J]. Materials Chemistry Frontiers, 2021, 5(8): 3480-3488.
    [28]HUO Y, XIU S, MENG L, et al. Solvothermal synthesis and applications of micro/nano carbons: A review [J]. Chemical Engineering Journal, 2023, 451: 138572.
    [29]LU J, JIAO X, JIAO X, et al. Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates [J]. Journal of Physical Chemistry C, 2009, 113(10): 4012-4017.
    [30]LIU X, DUAN X, QIN Q, et al. Ionic liquid-assisted solvothermal synthesis of oriented self-assembled Fe3O4 nanoparticles into monodisperse nanoflakes [J]. Crystengcomm, 2013, 15(17): 3284-3287.
    [31]ZOU G, XIONG K, JIANG C, et al. Magnetic Fe3O4 nanodisc synthesis on a large scale via a surfactant-assisted process [J]. Nanotechnology, 2005, 16(9): 1584-1588.
    [32]ZHUANG L, ZHANG W, ZHAO Y, et al. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method [J]. Scientific Reports, 2015, 5: 9320.
    [33]CHEN L, ZHOU Q, XIONG Q, et al. Shape-Evolution and Growth Mechanism of Fe3O4 Polyhedrons [J]. Advances in Materials Science Engineering, 2015, 2015:1-7.
    [34]LI W, YAO X, GUO Z, et al. Fe3O4 with novel nanoplate-stacked structure: Surfactant-free hydrothermal synthesis and application in detection of heavy metal ions [J]. Journal of Electroanalytical Chemistry, 2015, 749: 75-82.
    [35]ZHU J, NAN Z. Zn-Doped Fe3O4 Nanosheet Formation Induced by EDA with High Magnetization and an Investigation of the Formation Mechanism [J]. Journal of Physical Chemistry C, 2017, 121(17): 9612-9620.
    [36]ZHAO Z, LIU J, CUI F, et al. One pot synthesis of tunable Fe3O4–MnO2 core–shell nanoplates and their applications for water purification [J]. Journal of Materials Chemistry, 2012, 22(18): 9052-9057.
    [37]LIU X, OR S, LEUNG C, et al. Microwave complex permeability of Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation [J]. Journal of Applied Physics, 2013, 113(17): 17B307.
    [38]KAMEI Y, WAKAYAMA K, MAKINOSE Y, et al. Syntheses of iron oxide nanoplates by hydrothermal treatment of iron-oleate precursor and their magnetization reversal [J]. Materials Science and Engineering B, 2017, 223: 70-75.
    [39]GUO C, WANG L, ZHU Y, et al. Fe3O4 nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries [J]. Nanoscale, 2015, 7(22): 10123-10129.
    [40]LIU Y, PAN F, WANG M, et al. Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation [J]. Journal of Membrane Science, 2021, 620: 118916.
    [41]WAN Y, SHI X, XIA H, et al. Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithiumion batteries [J]. Materials Research Bulletin, 2013, 48(11): 4791-4796.
    [42]YANG Y, LIU X, LV Y, et al. Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc [J]. Advanced Functional Materials, 2014, 25(5): 812-820.
    [43]YANG Y, YANG Y, XIAO W, et al. Shape-dependent microwave permeability of Fe3O4 nanoparticles: a combined experimental and theoretical study [J]. Nanotechnology, 2015, 26(26): 265704.
    [44]YANG Y, LI M, WU Y, et al. Size-dependent microwave absorption properties of Fe3O4 nanodiscs [J]. Rsc Advances, 2016, 6(30): 25444-25448.
    [45]YANG Y, LI M, WU Y, et al. Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding [J]. Nanoscale, 2016, 8(35): 15989-15998.
    [46]GAO G, LU S, DONG B, et al. One-pot synthesis of carbon coated Fe3O4 nanosheets with superior lithium storage capability [J]. Journal of Materials Chemistry A, 2015, 3(8): 4716-4721.
    [47]LIU Y, FU Y, LIU L, et al. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C Core-Shell Nanosheets for Improved Microwave Absorption [J]. Acs Applied Materials Interfaces, 2018, 10(19): 16511-16520.
    [48]DENG M, WU X, ZHU A, et al. Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal [J]. Journal of Environmental Management, 2019, 237: 63-74.
    [49]ELAKKIYA R, MATHANKUMAR S, MADURAIVEERAN G. Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose [J]. Materials Chemistry and Physics, 2021, 269: 124770.
    [50]LUQUE DE CASTRO M D, PRIEGO-CAPOTE F. Ultrasound-assisted crystallization (sonocrystallization) [J]. Ultrasonics Sonochemistry, 2007, 14(6): 717-724.
    [51]CHAI H, LI Y, LUO Y, et al. Investigation on isopropanol sensing properties of LnFeO3(Ln = Nd, Dy, Er) perovskite materials synthesized by microwave-assisted hydrothermal method [J]. Applied Surface Science, 2022, 601: 154292.
    [52]SURINWONG S, RUJIWATRA A. Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles [J]. Particuology, 2013, 11(5): 588-593.
    [53]CHENG J, MA R, SHI D, et al. Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature [J]. Ultrasonics Sonochemistry, 2010, 18(5): 1038-1042.
    [54]CHENG J, MA R, CHEN X, et al. Effect of ferric ions on the morphology and size of magnetite nanocrystals synthesized by ultrasonic irradiation [J]. Crystal Research Technology, 2011, 46(7): 723-730.
    [55]ZHOU H, YI R, LI J, et al. Microwave-assisted synthesis and characterization of hexagonal Fe3O4 nanoplates [J]. Solid State Sciences, 2010, 12(1): 99-104.
    [56]?UTKA A, LAGZDINA S, JUHNEVICA I, et al. Precipitation synthesis of magnetite Fe3O4 nanoflakes [J]. Ceramics International, 2014, 40(7): 11437-11440.
    [57]HOINKIS N, LUTZ H, LU H, et al. Assembly of iron oxide nanosheets at the air-water interface by leucine-histidine peptides [J]. RSC Advances, 2021, 11(45): 27965-27968.
    [58]ZHANG F, YANG Z, YIN T, et al. Simple and facile synthesis of magnetic nanosheets by improved precipitation method [J]. Journal of Alloys and Compounds, 2022, 922: 166305.
    [59]YIN C, GONG C, CHU J, et al. Ultrabroadband Photodetectors up to 10.6 mu m Based on 2D Fe3O4 Nanosheets [J]. Advanced Materials, 2020, 32(25): 202237.
    [60]HUANG S, ZHANG J, YANG L, et al. Inward lithium-ion breathing of hollow carbon spheres-encapsulated Fe3O4@C nanodisc with superior lithium ion storage performance [J]. Journal of Alloys and Compounds, 2019, 800: 16-22.
    [61]SUN D, SUN D, HAO Y. Controlled synthesis of Fe3O4 nanosheets via P123 micelle template [J]. Materials Science Forum, 2010, 663-665: 1125-1128.
    [62]WANG X, LIAO Y, ZHANG H, et al. Low Temperature-Derived 3D Hexagonal Crystalline Fe3O4 Nanoplates for Water Purification [J]. Acs Applied Materials Interfaces, 2018, 10(4): 3644-3651.
    [63]HU D, WANG Y. Preparation of Hexagonal Fe3O4 Nanometer Particles via Weakly Magnetic Field Assisted Oxidation Co-Precipitation [J]. Advanced Materials Research, 2012, 418-420: 286-292.
    [64]WANG W, LIU Y, YUE Y. The Confined Interlayer Growth of Ultrathin Two-Dimensional Fe3O4 Nanosheets with Enriched Oxygen Vacancies for Peroxymonosulfate Activation [J]. ACS Catalysis, 2021, 11(17): 11256-11265.
    [65]YING H, CHEN T, ZHANG C, et al. Regeneration of Porous Fe3O4 Nanosheets from Deep Eutectic Solvent for High-Performance Electrocatalytic Nitrogen Reduction [J]. Journal of Colloid and Interface Science, 2021, 602: 64-72.
    [66]MA M, ZHANG Y, GUO Z, et al. Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction [J]. Nanoscale Research Letters, 2013, 8: 1-7.
    [67]WU L, MENDOZA-GARCIA A, LI Q, et al. Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications [J]. Chemical Reviews, 2016, 116(18): 10473-10512.
    [68]LING D, LEE N, HYEON T. Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications [J]. Accounts of Chemical Research, 2015, 48(5): 1276-1285.
    [69]SMITH B, GAMBHIR S. Nanomaterials for In Vivo Imaging [J]. Chemical Reviews, 2017, 117(3): 901-986.
    [70]LEE N, YOO D, LING D, et al. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy [J]. Chemical Reviews, 2015, 115(19): 10637-10689.
    [71]YANG L, WANG Z, MA L, et al. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles [J]. Acs Nano, 2018, 12(5): 4605-4614.
    [72]SINGH K, OHLAN A, PHAM V, et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution [J]. Nanoscale, 2013, 5(6): 2411-2420.
    [73]CAO M, YANG J, SONG W, et al. Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J]. Acs Applied Materials Interfaces, 2012, 4(12): 6949-6956.
    [74]YANG R, LIANG W. Microwave Properties of High-Aspect-Ratio Carbonyl Iron/Epoxy Absorbers [J]. Journal of Applied Physics, 2011, 109(7): 07A311.
    [75]ZHAO D, LI X, SHEN Z. Preparation and Electromagnetic and Microwave Absorbing Properties of Fe-Filled Carbon Nanotubes [J]. Journal of Alloys and Compounds, 2009, 471(1-2): 457-460.
    [76]TUCEK J, KEMP K, KIM K, et al. Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications [J]. Acs Nano, 2014, 8(8): 7571-7612.
    [77]LIU D, WANG X, WANG X, et al. Ultrathin nanoporous Fe3O4-carbon nanosheets with enhanced supercapacitor performance [J]. Journal of Materials Chemistry A, 2013, 1(6): 1952-1955.
    [78]LIM B, JIN J, YOO J, et al. Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization [J]. Chemical Communications, 2014, 50(57): 7723-7726.
    [79]WONG W, WONG H, BADRUZZAMAN A B M, et al. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review [J]. Nanotechnology, 2017, 28(4): 042001.
    [80]LATA S, SAMADDER S. Removal of arsenic from water using nano adsorbents and challenges: A review [J]. Journal of Environmental Management, 2016, 166: 387-406.
    [81]LIU S, YU B, WANG S, et al. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles [J]. Advances in Colloid and Interface Science, 2020, 281:102165.
    [82]ADEWUNMI A, KAMAL M, SOLLING T. Application of magnetic nanoparticles in demulsification: A review on synthesis, performance, recyclability, and challenges [J]. Journal of Petroleum Science and Engineering, 2021, 196: 107680.
    [83]ABD ELRAHMAN A, MANSOUR F. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application [J]. Journal of Petroleum Science and Engineering, 2019, 52: 702-712.
    [84]XU D, ZHANG H, PENG J, et al. Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on Fe3O4 Nanosheets Saturable Absorber [J]. Photonics, 2022, 9(5): 306.
    [85]DU H, ZHANG D, XU R, et al. Ferric oxide nanosheet-engineered Mg alloy for synergetic osteosarcoma photothermal/chemodynamic therapy [J]. Journal of Materials Science Technology, 2023, 138: 203-213.
    [86]ZHANG F, YANG Z, YIN T, et al. Study of Pickering emulsions stabilized by Janus magnetic nanosheets [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 654: 130194.
    相似文献
    引证文献
引用本文

张风帆,李媛媛,尹太恒,杨子浩,董朝霞.磁性纳米片的制备及功能化应用研究进展[J].精细化工,2023,40(10):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-10
  • 最后修改日期:2023-05-05
  • 录用日期:2023-05-08
  • 在线发布日期: 2023-10-10
文章二维码