原位合成Si/(SiO+Ag)复合负极材料及电化学性能
DOI:
CSTR:
作者:
作者单位:

安徽工业大学材料科学与工程学

作者简介:

通讯作者:

中图分类号:

O613

基金项目:

国家自然科学基金(52207246)、安徽省教育委员会自然科学研究项目(KJ2020A0263, YJS20210336)先进金属材料绿色制造与表面技术重点实验室(GFST2022ZR02, GFST2021KF01)、国家级外国专家引进计划项目(G20190219004)和校企合作项目(RD182000582019H3-72020H3-8)资助


In-situ mechanochemical synthesis of Si/ (SiO + Ag)composite anodes and electrochemical property evaluation
Author:
Affiliation:

School of Materials Science and Engineering,Anhui University of Technology,Maanshan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    开发一种机械化学原位固相反应合成硅基复合材料,该方法通过球磨过量微米Si和Ag2O,使其在球磨破碎过程中原位形成SiO和Ag颗粒并附着在基体Si上,简记Si/(SiO+Ag),并以沥青为碳源采用高温煅烧制备碳包覆硅基复合材料Si/(SiO+Ag)-C。这两种复合材料都展现出良好的倍率性能,在低电流密度(0.12 A/g)下分别表现出1422和1039 mA h/g的可逆比容量,而在高电流密度(2.4 A/g)下仍能获得672和393 mA h/g的可逆比容量;当电流密度再次恢复到0.12 A/g时,可逆容量可恢复到1329 和961 mA h/g。相比之下,碳包覆硅基复合材料表现出更好的循环稳定性,经80次循环后容量仍然稳定在943 mA h/g以上。这种突出的倍率性能归因于硅基颗粒细化及原位形成纳米Ag颗粒导电特性,而循环稳定性的提高与原位形成SiO和包覆碳构成的双相缓冲结构有关。

    Abstract:

    A mechanochemical in-situ solid-state reaction synthesis method for Si-based composites was developed. This method involves milling excess micron-Si and Ag2O to form SiO and Ag particles in-situ and adhere to the matrix Si during the ball-milling crushing process (abbreviated as Si/( SiO + Ag )). Carbon-coated Si-based composites Si/( SiO + Ag ) - C were prepared using asphalt as a carbon source by high-temperature calcination. Both of these composites exhibit excellent rate performance, exhibiting reversible specific capacities of 1422 and 1039 mA h/g at low current density (0.12 A/g), respectively, while 672 and 393 mA h/g can still be obtained at high current density (2.4 A/g); When the current density is restored to 0.12 A/g again, the reversible capacity can be restored to 1329 and 961 mA h/g. In contrast, Si/(SiO + Ag ) - C exhibit better cycle stability, and their capacity remains stable above 943mA h/g after 80 cycles. This outstanding rate performance is attributed to the refinement of Si-based particles and the electrical conductivity of in situ-formed nano-Ag particles, while the improvement in cycle stability is related to the dual-phase buffer structure composed of in situ-formed SiO and coated carbon.

    参考文献
    相似文献
    引证文献
引用本文

王 帅,唐 梦,蔡振飞,曹 瑞,马扬洲,宋广生.原位合成Si/(SiO+Ag)复合负极材料及电化学性能[J].精细化工,2024,41(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-28
  • 最后修改日期:2023-06-15
  • 录用日期:2023-06-15
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码