植物纤维增强热塑性复合材料的研究进展
作者:
作者单位:

1.贵州民族大学化学工程学院;2.贵州省贵阳市贵州民族大学新校区化学工程学院;3.国家复合改性聚合物材料工程技术研究中心 贵州 贵阳

中图分类号:

TQ34

基金项目:

国家自然科学(52163001);贵州民族大学科研平台资助项目(GZMUGCZX[2021]01);贵州省省级科技计划项目资助(黔科合平台人才-CXTD[2021]005,黔科合平台人才-GCC[2022]010-1);贵州省省级科技计划项目资助(黔科合成果(2019)4022号);贵阳市专家工作站(ZJGZZ2021-07);贵阳市白云区科技计划项目(白科合同[2020]28号)。中央引导地方科技发展资金项目:黔科合中引地[2023]035。第一作者:杨人元,男,硕士研究生,研究方向为复合材料加工及制备。E-mail:yryuan1998@163.com。通信作者:张道海,男,博士,研究员,研究方向为高性能复合材料的开发及应用。E-mail:zhangdaohai6235@163.com。 ,王宏伟1,龙雪彬2,张道海1,2*,秦舒浩1,2*


Research progress in fiber plants reinforced thermoplastic composites
Author:
Affiliation:

1.College of Chemical Engineering,Guizhou Minzu University,Guizhou Guiyang;2.National Engineering Research Center of Composite Modified Polymer MaterialsGuizhou Guiyang

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    当前,由石油化工原料合成的纤维材料的广泛应用造成的环境污染问题变得日益严峻,因此迫切需要开发绿色环保的新型纤维材料。植物纤维具有可再生和可降解的特点,在当前强调绿色发展的背景下备受关注,尤其在增强热塑性复合材料领域具有广阔的应用前景。近年来,使用植物纤维混合热塑性高分子聚合物得到性能优异的复合材料已经逐步发展为一项成熟的技术。本文总结了目前常用的植物纤维的处理方式以及植物纤维应用在不可降解和可降解热塑性复合材料中的最新研究成果,以期为热塑型绿色环保材料的开发和利用提供较为前沿的思路与方法。

    Abstract:

    At present, the environmental pollution problem caused by the wide application of fiber materials synthesized from petrochemical industry is becoming more and more serious, so it is urgent to develop new green fiber materials. Due to its renewable and degradable properties, fiber plants have attracted much attention in the current environment with an emphasis on green development, especially in the field of reinforced thermoplastic composites. In recent years, the use of fiber plants thermoplastic polymers to obtain composites with excellent properties has gradually developed into a mature technology. In this paper, we summarize the current treatment methods of fiber plants and the latest research results of the application of fiber plants in non-degradable and degradable thermoplastic composites, in order to provide more advanced ideas and methods for the development and utilization of thermoplastic green materials.

    参考文献
    [1] PA P, SASIKUMAR M. Viscoelastic and mechanical behaviour of reduced graphene oxide and zirconium dioxide filled Jute/Epoxy composites at different temperature conditions[J]. Materials Today Communications, 2019,19: 252-261.
    [2] JARIWALA H, JAIN P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications[J]. Journal of Reinforced Plastics and Composites, 2019, 38: 441–453.
    [3] ZHAN J, WANG J, LIN J, et al. Flame‐retardant, thermal and mechanical properties of PLA/ramie fiber composites[J]. Polymer Composites, 2022,43:4244-4254.
    [4] BITTNER C M, Oettel V. Fiber reinforced concrete with natural plant fibers—investigations on the application of bamboo fibers in Ultra-High performance concrete.SSustainability. 2022; 14(19):12011.
    [5] LIU J, Liu S, Zhu L, ,et al. Carbon neutrality potential of textile products made from plant-derived fibers.SSustainability. 2023; 15(9):7070.
    [6] BALOGUN O A, Daramola O O, Adediran A A, et al. Investigation of Jute/Tetracarpidium conophorum reinforced polypropylene composites for automobile application: Mechanical, wear and flow properties [J]. Alexandria Engineering Journal, 2023, 65: 327-41.
    [7] MAHMUD S, HASAN K M F, JAHID M A, et al. Comprehensive review on plant-fiber reinforced polymeric biocomposites[J]. Journal of Materials Science, 2021,56:7231–7264.
    [8] 鲁博. 天然纤维复合材料[M]. 北京: 化学工业出版社, 2005, 16-36.
    [9] GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives[J]. Composites Part A: Applied Science and Manufacturing, 2015,77: 1-25.
    [10] VINOD A , SANJAY M R , SUCHART S ,et al. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites[J].Journal of Cleaner Production, 2022,258:120978.
    [11] LIU Y , LV X , BAO J ,et al. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites[J].Carbohydrate polymers, 2019,218:179-187.
    [12] HAMID N H , HISAN W S I W B , ABDULLAH U H ,et al. Mechanical properties and moisture absorption of epoxy composites mixed with amorphous and crystalline silica from rice husk[J]. BioResources, 2019,3:7363–7374.
    [13] 兰碧. 二恶唑啉改性剑麻纤维增强聚乳酸复合材料的制备及性能研究[D].华南理工大学,2018.
    [14] LIANG Z , WU H , LIU R ,et al. Preparation of long sisal Fiber-Reinforced polylactic acid biocomposites with highly improved mechanical performance[J].Polymers, 2021,13:1124.
    [15] INSEEMEESAK B, SIRIPAIBOON C, SOMKEATTIKUL K, et al. Biocomposite fabrication from pilot-scale steam-exploded coconut fiber and PLA/PBS with mechanical and thermal characterizations [J]. Journal of Cleaner Production, 2022,379:134517.
    [16] WU J, YIXIU Z, ZHONG T, et al. Bamboo slivers with high strength and toughness prepared by alkali treatment at a proper temperature [J]. Journal of Wood Science, 2023, 69(1):1-12.
    [17] HE L, XIA F, WANG Y, et al. Mechanical and dynamic mechanical properties of the amino silicone oil emulsion modified ramie fiber reinforced composites.[J].Polymers, 2021 ,13:4083
    [18] YAN L, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Compos. Part B Eng.2016, 92: 94–132.
    [19] MURAWSKI A, DIAZ R, INGLESBY S, et al. Synthesis of Bio-based polymer Composites: Fabrication, Fillers, Properties, and Challenges [M]. Polymer nanocomposites in biomedical engineering. 2019: 29-55.
    [20] MA S , LI T , LIU X ,et al. Research progress on bio-based thermosetting resins[J].Polymer International, 2016,65:164–173.
    [21] RODRIGUEZ C W, RODRIGUE D. Production and characterization of hybrid polymer composites based on natural fibers [M]. Composites from Renewable and Sustainable Materials. 2016:273-302.
    [22] MAHMUD S, HASAN K M F, JAHID M A, et al. Comprehensive review on plant fiber-reinforced polymeric biocomposites [J]. Journal of Materials Science, 2021,56:7231-7264.
    [23] SECULI f, ESPINACH F X, JULIAN F, et al. Comparative evaluation of the stiffness of Abaca-Fiber-Reinforced Bio-Polyethylene and high density polyethylene composites [J]. Polymers, 2023,15:1096.
    [24] JIANG L , YANG Y , FU J ,et al. Erosive wear analysis of bamboo fiber‐reinforced high‐density polyethylene composites: effect of aluminum oxide[J].Polymer Composites, 2022,43(6):3823-3830.
    [25] HE L, LI W, CHEN D, et al. Investigation on the microscopic mechanism of potassium permanganate modification and the properties of ramie fiber/polypropylene composites [J]. Polymer Composites, 2018, 39(9): 3353-3362.
    [26] BHUIYAN M A R, DARDA M A, ALI A, et al. Heat insulating jute-reinforced recycled polyethylene and polypropylene bio-composites for energy conservation in buildings [J]. Materials Today Communications, 2023,37:106948.
    [27] RAZA M, AL Abdallah H, KOZAL M, et al. Development and characterization of Polystyrene–date palm surface fibers composites for sustainable heat insulation in construction [J]. Journal of Building Engineering, 2023,75:106982.
    [28] OWEN M M, ACHUKWU E O, SHUIB S B, et al. Effects of high‐temperature optimization and resin coating treatment on the mechanical, thermal, and morphological properties of natural kenaf fiber‐filled engineering plastic composites [J]. Polymer Composites, 2023, 44(4): 2512-2529.
    [29] SAKTHIVEL A R , KANDASAMY J .A case study of 3D printed PLA and its mechanical properties[J]. Materials Today: Proceedings,2018 ,5:11219–11226.
    [30] SCHICK S, Groten R, Seide GH. Performance spectrum of Home-Compostable biopolymer fibers compared to a petrochemical alternative.SPolymers. 2023, 15:1372.S
    [31] SANIVADA U K ,GONZALO Mármol, BRITO F P ,et al. PLA composites reinforced with flax and jute Fibers-A review of recent trends, processing parameters and mechanical properties[J].Polymers, 2020,12:2373.
    [32] MU W, CHEN X, LI S, et al. Mechanical performances analysis and prediction of short plant fiber-reinforced PLA composites [J]. Polymers, 2023 ,15:3222.
    [33] AGUADO R J, ESPINACH F X, JULIAN F, et al. Tensile strength of Poly(Lactic Acid)/Bleached short hemp fiber fully green composites as replacement for Polypropylene/Glass Fiber [J]. Polymers, 2023,15:146.
    [34] YUE T, WANG H, FU Y, et al. Non-Isothermal crystallization of Titanium-Dioxide-Incorporated rice straw Fiber/Poly(butylene succinate) biocomposites [J]. Polymers, 2022 ,14:1479.
    [35] XIE L, HUANG j, XU H, et al. Effect of large sized reed fillers on properties and degradability of PBAT composites [J]. Polymer Composites, 2023, 44(3): 1752-1761.
    [36] WANG Y-Y, WANG Y, ZHU W, et al. Flexible poly(butylene adipate-co-butylene terephthalate) enabled high-performance polylactide/wood fiber biocomposite foam [J]. Industrial Crops and Products, 2023,204:117381
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨人元,周腾,王宏伟,龙雪彬,张道海,秦舒浩.植物纤维增强热塑性复合材料的研究进展[J].精细化工,2024,41(8):

复制
分享
文章指标
  • 点击次数:99
  • 下载次数: 8488
  • HTML阅读次数: 57
  • 引用次数: 0
历史
  • 收稿日期:2023-09-20
  • 最后修改日期:2023-11-27
  • 录用日期:2023-11-14
  • 在线发布日期: 2024-08-08
文章二维码