DOI:10.13550/j.jxhg.20240919
中图分类号:TS264.3
王希奥, 周露露, 胡静
| 【作者机构】 | 上海应用技术大学香料香精化妆品学部; 华东理工大学化工学院 |
| 【分 类 号】 | TS264.3 |
| 【基 金】 | 国家自然科学基金项目(22078196、22278268) 上海市自然科学基金项目(22ZR1460400) 上海市青年科技英才扬帆计划资助项目(23YF1446300) 上海应用技术大学引进人才科研启动项目(YJ2023-10) |
在2019 年新型冠状病毒(COVID-19)爆发之后,嗅觉功能障碍升级为一个全球性的健康问题[1]。近85.6%的COVID-19 患者显示出从轻度丧失(嗅觉减退和嗅觉缺失)到完全丧失(嗅觉缺失)的嗅觉功能障碍[2]。大多数65 岁以上的老年人有嗅觉减退的症状[3];此外,老年人嗅觉功能的下降还与早期死亡有密切联系[4]。嗅觉功能障碍不仅影响嗅觉相关职业(厨师、调酒师和调香师等)的从业资格[5],还增加了暴露于火灾、有毒气体泄漏等风险环境的几率[6]。嗅觉功能障碍的诱因包括上呼吸道急性感染、鼻部炎症及头部创伤等[7]。此外,嗅觉功能障碍也是神经退行性疾病的临床前驱症状[8]。目前,糖皮质激素与维生素A 等药物治疗嗅觉功能障碍的有效性在临床上已获得初步验证,但尚未形成统一的治疗模式[9]。并且,研究表明,局部使用糖皮质激素可能会损害嗅觉功能[10],鼻内镜手术也不能完全解决嗅觉功能障碍,相当一部分慢性鼻窦炎患者在术后2~5 年内嗅觉功能未见明显改善[11]。因此,研发更为安全有效的治疗方案以恢复嗅觉功能,是当前亟待解决的问题。
精油及其组分具有抗炎、抗病毒等生物活性,有助于嗅觉功能的恢复[12]。使用精油进行嗅觉训练已被证明是一种有效治疗因感染或创伤所致嗅觉丧失的策略[13]。在临床中,一年内接受嗅觉训练的患者,其嗅觉功能改善的成功率为71%,而未接受者仅为37%。这一数据表明,嗅觉训练可作为高效且安全的治疗手段用于恢复患者的嗅觉功能[14]。该疗法主要通过促进神经可塑性及嗅觉神经元再生,进而改善不同疾病介导的嗅觉功能障碍[15],具有天然安全、疗效显著和复发风险低等优势[16]。
本综述将系统性阐述精油在治疗嗅觉功能障碍及其临床应用上的最新进展,概述气味感知机制与嗅觉功能障碍的临床病因,从不同生物活性的视角深入探讨精油治疗嗅觉功能障碍的潜力,以期依据不同病因精准选用精油,并实现治疗效果的优化(图1)。简要概述精油促进嗅觉恢复的递送方式,为构建温和且高效的嗅觉功能障碍治疗方案提供理论基础。
图1 精油及其组分恢复嗅觉功能障碍的示意图
Fig. 1 Schematic diagram of essential oils and their components to recover olfactory dysfunction
嗅觉传导机制涉及嗅上皮受体细胞对空气中气味分子的识别。气味分子经过三级传递与加工后,最终在大脑皮层形成完整的气味感知[17]。具体而言,嗅觉产生于鼻腔内的嗅上皮,该区域的嗅觉神经元受气味分子刺激后产生电信号并沿轴突传递至嗅球。随后,这些信号被传递到大脑的其他区域,引发气味感知及相应的情绪和行为反应[18]。嗅上皮中的嗅觉神经元衰老死亡后会由基底细胞分化补充,这一再生过程为嗅觉恢复提供了生理学基础[19]。
HÜTTENBRINK 等[20]将嗅觉功能障碍分为嗅觉减退、嗅觉丧失和嗅觉错乱,其特征为嗅觉功能不同程度的受损(从部分到完全)以及对常见气味的超敏反应等。目前,超过200 种疾病与120 种化学物质可致嗅觉功能障碍,其中上呼吸道感染、头面部创伤及鼻部炎症最为常见,其他诱因包括神经退行性疾病、先天性畸形、自身免疫疾病、中毒和营养不良等[21]。
感染后嗅觉功能障碍(PVOD)可由多种病原体引起,其中病毒尤为常见[22]。MENNI 等[23]收集的病症数据显示,COVID-19 阳性组中有59%的人失去了嗅觉和味觉,而阴性组仅有18%。进一步研究显示,嗅觉缺失对COVID-19 具有预测价值,其敏感性为54.0%,特异性高达86.0%。关于COVID-19感染后嗅觉丧失的病理生理学机制,研究者提出了病毒诱导的炎症可能损害嗅觉神经上皮或中枢嗅觉通路的假设。PAN 等[24]研究发现,COVID-19 患者的嗅上皮中促炎因子水平升高,表明炎症反应可能在急性嗅觉障碍中发挥作用。BRANN 等[25]发现,严重急性呼吸综合征冠状病毒2 型(SARS-CoV-2)入侵相关转录物〔如血管紧张素转化酶(ACE2)和跨膜丝氨酸蛋白酶(TMPRSS2)〕在嗅上皮和嗅球中的非神经元细胞(如支撑细胞、干细胞和血管周围细胞)中被大量检出。因此,COVID-19 患者的嗅觉功能障碍可能源于炎症反应以及特定非神经元细胞的感染[26]。
研究显示,嗅觉测试能够提高特发性帕金森病(PD)的诊断准确性[27],这表明嗅觉功能障碍可作为神经退行性疾病的早期预警标志,从而辅助其鉴别与诊断。神经退行性疾病中微管相关蛋白(Tau)、淀粉样β 蛋白(Aβ)、α-突触核蛋白等神经病理学标志物的含量被认为对嗅觉功能有显著的影响。据报告,在阿尔茨海默病(AD)及PD 患者的嗅球内观察到Tau、Aβ 或α-突触核蛋白的异常沉积[28]。其中,Aβ 能抑制乙酰胆碱(主要调节前脑抗炎通路的关键神经递质)的合成与释放[29]。而BOHNEN 等[30]发现,PD 患者的气味识别能力与脑内乙酰胆碱酯酶活性呈显著正相关(皮尔逊相关系数r>0.5)。据此推测,胆碱能系统损伤可能是神经退行性疾病诱发嗅觉功能障碍的核心机制。
鼻炎引发的嗅觉功能障碍分为传导性与感觉神经性两类,前者源于嗅觉黏膜气流受阻,后者则归因于嗅上皮神经及中枢嗅觉通路受损。详细来说,鼻窦黏膜炎症(如鼻息肉)导致的气流障碍,会严重限制气味分子进入鼻窦区域,进而诱发传导性嗅觉障碍[31]。PFAAR 等[32]研究显示,在健康的志愿者嗅裂或呼吸道上皮放置高盐海绵后,嗅觉辨别力下降,证实了嗅裂前部物理阻塞对嗅觉功能的负面影响。除了气流通畅度的影响之外,慢性炎症会改变嗅觉黏液组分,进而导致炎症相关性嗅觉功能障碍。SELVARAJ 等[33]发现,在慢性鼻炎小鼠的鼻分泌物中,钾离子浓度升高、钠离子浓度降低,而鼻腔冲洗可帮助嗅觉恢复。WU 等[34]检测到慢性鼻窦炎患者嗅裂黏液中白细胞介素-2(IL-2)、IL-5、IL-6、IL-10 及IL-13 水平升高与嗅觉识别评分降低相关。综上,鼻炎介导的嗅觉功能障碍机制涉及气道传导障碍与炎症反应。
精油作为天然多组分体系,展现出多样的生物活性与药用潜能,如抗菌、抗氧化、抗炎、抗病毒及抗过敏效应[35]。其中,单萜烯与倍半萜烯成分赋予了精油独特的香气,且因其低相对分子质量和高亲脂性而表现出较高的吸收率和膜渗透性,因此被广泛应用于鼻炎、睡眠障碍、AD、心血管疾病及分娩镇痛等多种疾病的治疗[36]。特别是作为挥发性芳香化合物,精油常被用于嗅觉领域的研究,以探索嗅觉区域的神经活动及气味识别的行为极限,为精油治疗嗅觉功能障碍奠定了基础。精油改善嗅觉功能的机制与其影响人类嗅觉通路和促进神经再生的能力相关[37]。因此,本节聚焦于精油的生物学活性,探讨其恢复嗅觉的机制,并简述嗅觉训练在治疗不同疾病所致嗅觉功能障碍中的潜力。
嗅觉训练采用包含玫瑰油、柠檬油、桉树油和丁香油的精油混合物来治疗嗅觉功能障碍。该疗法利用不同的气味刺激受损、异常或无功能的嗅觉神经元再生,随后通过增强这些神经元的活性来改善嗅觉功能[38]。2022 年的一项研究强调,使用精油进行嗅觉训练,可通过“周围神经可塑性”与“中枢机制”促进嗅觉恢复[39]。具体而言,嗅鞘细胞在嗅觉神经损伤后的轴突再生中扮演关键角色,而嗅觉训练可促进嗅鞘细胞及神经前体细胞的增殖与活化,进而刺激嗅觉结构再生[40]。此外,嗅觉功能障碍患者表现出嗅觉相关脑区(如眶额叶皮质、岛叶皮质、内嗅皮质、梨状皮质、扣带回皮质及杏仁核)灰质体积的减少[41]。值得注意的是,嗅觉训练或能通过调节杏仁核-海马复合体与嗅觉神经的直接联系来增加丘脑和海马灰质体积[42]。GELLRICH 等[43]将精油应用到嗅觉训练中以改善嗅觉敏感性,结果显示,海马体和丘脑灰质体积增加,与上文嗅觉恢复的两种机制相符。然而,嗅觉训练中气味的选择依据是Henning 在1916 年提出的气味经典分类(气味棱镜:该分类将气味分为水果、花卉、香料、树脂、腐烂和烧焦6 类,嗅觉训练选取了4 种关键气味),而并非基于精油成分的特定生物活性[44]。近期研究聚焦于探究精油活性成分的具体功能,如抑制神经性疼痛和炎症、抗病毒及抗焦虑作用。此外,某些精油的成分还可激活嗅觉受体[45]。结合嗅觉功能障碍的病理机制与精油的作用机制,有望开发出更具针对性的精油组合用于嗅觉训练。
2.2.1 抗炎作用
COVID-19 导致的嗅觉功能障碍可以总结为非神经元细胞的炎症反应。精油包含丰富的酚类成分,能有效抑制促炎因子的释放或提升抗炎因子水平,为治疗支撑细胞炎症引起的嗅觉功能障碍提供了理论基础(表1)。例如:藏红花提取物中的藏红花素可调控SARS-CoV-2 诱导的细胞因子级联,降低促炎酶活性〔如诱导型一氧化氮合酶(iNOS)、环氧化酶-2(COX-2)、髓过氧化物酶、磷脂酶A2 和前列腺素E2〕[46];来自柳树皮的水杨苷则对SARSCoV-2 相关细胞因子(即IL-6、IL-1β 和IL-10)及炎症介质(前列腺素E2 和COX-2)具有浓度依赖性抑制作用[47];橄榄树提取物中的油酸和橄榄香苷元能改善多种促炎因子释放〔如IL-6、白细胞介素-1(IL-1β)、肿瘤坏死因子α(TNF-α)、IL-8、细胞间细胞黏附分子、血管细胞黏附分子〕,并调节相关的基因表达,如COX-2、核因子κB(NF-κB)、ACE2 和TMPRSS2,有效抑制SARS-CoV-2 病毒入侵[48];匙羹藤提取物显著降低肺损伤模型中炎症因子、趋化因子水平[49]。PATANGRAO 等[50]证实了长春花中的长春胺能抑制促炎细胞因子表达,同时提升抗炎细胞因子水平。这些发现凸显了精油与COVID-19 炎症治疗的潜在相关性。
表1 精油的抗炎机制
Table 1 Anti-inflammatory mechanisms of essential oils
注:Th1 代表辅助T 细胞1;“—”代表未提及,下同。
疾病 精油 组分 作用机制 参考文献COVID-19 藏红花 藏红花素 促炎酶活性下降,如iNOS、COX-2、髓过氧化物酶、磷脂酶A2 和前列腺素E2 下降柳树皮 水杨苷 促炎因子下降,如IL-6、IL-1β 和IL-10 下降;炎症介质下降,如前列腺素E2 和COX-2 下降橄榄树 油酸、橄榄香苷元 促炎因子下降,如IL-6、IL-1β、TNF-α、IL-8;细胞间细胞黏附分子下降、血管细胞黏附分子下降;促炎基因表达下降,如COX-2、NF-κB、ACE2 和TMPRSS2 下降[46][47][48]匙羹藤 — 调节NF-κB/MAPK 通路 [49]长春花 长春胺 调节NF-κB/MAPK 通路 [50]神经退行性疾病 柽柳 — 胶质细胞活化下降,如NO 下降;促炎因子下降,如IL-6、IL-1β、TNF-α、iNOS 下降;调节NF-κB 通路;丝裂原活化蛋白激酶的激活下降[51]桃李 绿原酸、儿茶素 促炎酶活性下降,如COX-2 和NO 合成酶下降;促炎因子下降,如IL-6、IL-1β、TNF-α 下降;调节NF-κB 通路;亚硝酸盐下降[52]牛至 百里酚 促炎因子下降,如TNF-α 和iNOS 下降 [53]鼻炎 薄荷 儿茶酚胺 抗炎 [54]— 胡椒碱 嗜酸性粒细胞下降,调节NF-κB 通路,抗炎因子增加,如Th1 增加[55]肉桂 肉桂醛 浆细胞和嗜酸性粒细胞下降 [56]
此外,精油的抗炎特性也常用于AD 等神经退行性疾病的辅助治疗。柽柳提取物能有效地减少活化小胶质细胞产生一氧化氮(NO)及促炎介质,如iNOS、TNF-α、IL-1β 和IL-6 的转录,并通过蛋白质印迹分析证实,其能抑制NF-κB 信号通路及丝裂原活化蛋白激酶的激活[51];桃李中的绿原酸和儿茶素则可下调促炎酶(NO 合成酶、COX-2)及炎症因子(TNF-α、IL-1β、IL-6)的表达,减少亚硝酸盐的生成,并阻止星形胶质细胞中 NF-κB的易位[52]。JAVADIAN 等[53]的研究表明,牛至精油中的百里酚通过抑制iNOS 和TNF-α 表达,展现出对活化小胶质细胞的抗炎作用。精油通过类似于PVOD 的抗炎机制来缓解神经退行性疾病相关的嗅觉功能障碍。
靶向炎症的精油干预策略可通过降低炎症介质水平、减轻局部炎症细胞浸润及气流阻塞来改善鼻炎引发的嗅觉功能障碍。具体而言,薄荷油滴鼻剂内含的8 种儿茶酚胺具有显著的抗炎特性,能有效地缓解鼻炎的鼻塞症状[54]。胡椒碱能抑制鼻部组织及肺泡内的嗜酸性粒细胞聚集,并调节胞内信号转导与转录激活因子3 和NF-κB 信号通路,促进Th1因子合成,同时抑制炎症性辅助T 细胞2(Th2)和辅助T 细胞17(Th17)因子生成[55]。HANCI 等[56]发现,肉桂醛能阻止过敏性鼻炎大鼠模型的血管充血及炎症细胞(如浆细胞、嗜酸性粒细胞)浸润,证实了这种精油成分的抗氧化与抗炎活性。本节所讨论的精油展现了对3 种主要疾病介导的嗅觉功能障碍的辅助治疗潜力。
2.2.2 抗病毒作用
相较于流感病毒,SARS-CoV-2 在鼻上皮细胞中诱导的抗病毒免疫分子水平显著降低,可能导致病毒在黏膜内的持续复制,这种持续性可能诱发嗅觉功能障碍的发展[57]。精油中的多种组分展现出抗病毒活性,为治疗PVOD 相关嗅觉障碍提供了潜在的途径(表2)。特别是穿心莲内酯(源自穿心莲)与白桦酸(源自短毛桦树皮)能有效地抑制SARS-CoV-2 关键蛋白酶的活性[58-59]。C 样蛋白酶和木瓜蛋白酶在病毒复制中发挥重要的作用,而茴香醇、肉桂醛、香叶醇、肉桂乙酸酯、4-蒎烯醇、百里香酚和薄荷醇等萜烯通过与这些蛋白酶的结合来阻止病毒感染宿主细胞[60]。
表2 精油的抗病毒机制
Table 2 Antiviral mechanisms of essential oils
疾病 精油 组分 作用机制 参考文献COVID-19穿心莲 穿心莲内酯 SARS-CoV-2 关键蛋白酶活性下降 [58]短毛桦树皮 白桦酸 SARS-CoV-2 关键蛋白酶活性下降 [59]— 茴香醇、肉桂醛、香叶醇、肉桂乙酸酯、4-蒎烯醇、百里香酚和薄荷醇结合C 样蛋白酶和木瓜蛋白酶 [60]— 黄芩苷、百里酚、香芹酚、橙皮苷、1,8-桉叶醇及喹啉类生物碱SARS-CoV-2 关键蛋白酶活性下降 [61]
KETEBCHI 等[61]将影响COVID-19 的关键化合物归为酚类、类黄酮类、萜类及生物碱类,其中,黄芩苷、百里酚、香芹酚、橙皮苷、1,8-桉叶醇及喹啉类生物碱等对SARS-CoV-2 具有较强的亲和力,展现出良好的COVID-19 抑制作用。因此,探索精油抗病毒功效以治疗嗅觉功能障碍,可能是未来研究的方向。
2.2.3 乙酰胆碱酯酶抑制作用
乙酰胆碱在神经退行性疾病相关的嗅觉功能障碍中发挥重要的作用(表3),且多项研究证实了精油对乙酰胆碱酯酶的抑制作用[62-63]。
表3 精油对乙酰胆碱酯酶的抑制作用
Table 3 Acetylcholinesterase inhibition of essential oils
疾病 精油 组分 作用机制 参考文献神经退行性疾病积雪草 积雪草酸、十一酸乙酰胆碱酯酶活性下降[64]番石榴 氟吡莱烯 乙酰胆碱酯酶活性下降[65]
FIRDAUS 等[64]从积雪草中提取的积雪草酸和十一酸与乙酰胆碱酯酶的高结合亲和力,提示其具有潜在的抗胆碱能功效。同样,番石榴精油中的氟吡莱烯也表现出显著的乙酰胆碱酯酶抑制活性,为AD 治疗提供了新视角[65]。这些发现与神经退行性疾病致嗅觉功能障碍的机制吻合,据此推测,精油在治疗由神经退行性疾病引发的嗅觉功能障碍上极具潜力。然而,尚无直接使用精油治疗神经退行性疾病介导的嗅觉障碍的临床实例,这可能与神经退行性疾病机制的复杂性及嗅觉通路认知的不确定性相关。
2.2.4 抗过敏作用
精油的抗过敏特性揭示了其在缓解过敏性鼻炎介导的嗅觉功能障碍的功效。过敏性鼻炎的病理机制涉及持续暴露的抗原经树突状细胞向T 淋巴细胞呈递,诱发IL-4、IL-5 等细胞因子释放,促进免疫球蛋白E(IgE)的生成,并激活肥大细胞及嗜酸性粒细胞活化,肥大细胞进一步释放组胺、蛋白酶等介质[66]。基于此机制,KAWAMOTO 等[67]在小鼠过敏模型中探究生姜精油主要成分6-姜酚的抗过敏效果,发现其能抑制T 细胞活化及增殖的细胞因子产生,最终预防或减轻过敏性鼻炎症状。香芹酮通过抑制白细胞浸润、减少肺黏液分泌来调节IgE 介导的气道炎症[68]。上述精油及成分能够通过调控肥大细胞活化展现抗过敏作用,为治疗免疫疾病介导的嗅觉功能障碍提供了新策略(表4)。
表4 精油的抗过敏机制
Table 4 Antiallergic mechanisms of essential oils
疾病 精油 组分 作用机制 参考文献鼻炎生姜 6-姜酚T 细胞活化下降 [67]— 香芹酮白细胞浸润下降,肺黏液下降[68]
鉴于精油独特的脂溶性和促渗机制,常通过非侵入性途径递送,包括鼻腔递送、经皮吸收和口服(图2)。
图2 3 种主要的非侵入性精油递送途径
Fig. 2 Three main non-invasive routes of essential oils delivery
鼻腔递送在嗅觉功能障碍治疗中占据关键地位,研究显示,精油分子经鼻腔吸入后,可穿越肺泡进入血液循环,而小的脂溶性分子易透过血脑屏障影响大脑[69]。然而,鼻黏液纤毛清除机制及精油成分的不稳定性限制了其鼻腔递送效果,甚至会导致生物活性降低及潜在的毒性副产物生成[70]。纳米载体技术能有效地克服剂量与活性的限制。RINALDI 等[71]使用壳聚糖包覆百里香和丁香蒲桃精油,制备了纳米精油,展现出优于游离精油的黏膜黏附性和pH 的相容性。此外,海藻酸钠、泊洛沙姆及去乙酰化结冷胶等聚合物还可以与精油纳米乳液、脂质体等纳米材料结合,从而开发高吸收效率、强黏膜黏附性的鼻喷雾剂,为精油的医疗应用提供更便利的递送方式[72-73]。
经皮吸收作为便捷高效的无创性全身作用方式,主要作用形式为敷贴与按摩[74],但其有效性受限于皮肤角质层的屏障功能。精油因相对分子质量小、结构简单而展现出可逆性破坏角质层,以增强药物透皮吸收的潜力,能迅速穿透皮肤,3 min 内达真皮层,5 min 内至皮下组织[75]。此外,精油本身也具有药理活性,MALVEIRA 等[76]利用巴豆叶精油治疗小鼠伤口,观察到炎症减轻、愈合加速,并验证了其关键成分反式茴香醚的治疗潜力。相比之下,口服给药虽为常见无创途径,但精油可能对口腔黏膜及胃肠道黏膜造成损伤,引发毒性及强烈的胃肠道反应,且其有效成分易受胃酸、胃蛋白酶、消化液及胆汁的降解,导致功效显著降低[77]。由于这些限制,口服精油并没有得到广泛的应用。
病毒感染、鼻分泌物增多、免疫作用、炎症反应和乙酰胆碱活性异常被视为嗅觉功能障碍的关键机制。精油治疗的优势在于能克服传统疗法的高风险、治疗标准缺乏及疗程长等缺陷。本文综述了不同疾病中嗅觉功能障碍的发病机制,并探讨了精油及其组分的抗炎、抗病毒、乙酰胆碱酯酶抑制和抗过敏等特性,可能会辅助COVID-19、神经退行性疾病和鼻炎介导的嗅觉功能恢复。然而,精油生物利用度低、代谢快是亟待解决的关键问题。当前研究聚焦于利用纳米载体和高分子聚合物等递送系统封装精油,并探索更适宜的递送途径来提高精油疗效。
在症状和病因的基础上,精油在治疗嗅觉功能障碍方面具有一定的潜力。
(1)目前,参与治疗嗅觉功能障碍的多种药物存在缺乏统一标准、高耐药性风险和高复发率等问题。结合精油的多种生物效应与嗅觉恢复机制,或能建立更有效的治疗策略。
(2)根据嗅觉功能障碍的类型及发病机制,选用具有特定活性的精油替代嗅觉训练所使用的精油组合(如COVID-19 介导的嗅觉障碍可以选择抗炎、抗病毒活性更强的精油类别),以实现多靶点协同治疗,并提升其生物安全性。
(3)基于精油不同成分的特性,选用合适的递送系统(如聚合物纳米系统、纳米乳剂)与递送途径(如鼻腔递送和透皮吸收),有望进一步改进治疗效果。
尽管很难介绍所有的精油及成分对嗅觉的有利影响,但本文旨在关联精油作用机制与嗅觉功能障碍的发病机制,为后续开发更天然、温和、有效的治疗方案提供有意义的开端。
[1] CHANG K, ZAIKOS T, KILNER-PONTONE N, et al. Mechanisms of COVID-19-associated olfactory dysfunction[J]. Neuropathology and Applied Neurobiology, 2024, 50(2):e12960.
[2] LECHIEN J R, CHIESA-ESTOMBA C M, DE SIATI D R, et al.Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19):A multicenter European study[J]. European Archives of Oto-Rhino-Laryngology, 2020, 277(8):2251-2261.
[3] DONG Y, LI Y J, LIU K K, et al. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults[J].Alzheimer's & Dementia, 2023, 19(2):589-601.
[4] DEVANAND D P, LEE S, MANLY J, et al. Olfactory identification deficits and increased mortality in the community:Olfaction and mortality[J]. Annals of Neurology, 2015, 78(3):401-411.
[5] JAMES J, TSVIK A M, CHUNG S Y, et al. Association between social determinants of health and olfactory function:A scoping review[J]. International Forum of Allergy & Rhinology, 2021,11(10):1472-1493.
[6] LEE L, LUKE L, BOAK D, et al. Impact of olfactory disorders on personal safety and well-being:A cross-sectional observational study[J].European Archives of Oto-Rhino-Laryngology, 2024, 281(2):3639-3647.
[7] SONG X Y, SUN Q, WEI S Z, et al. IL-6 mediates olfactory dysfunction in a mouse model of allergic rhinitis[J]. Brain Research,2024, 1833(6):148885.
[8] LI H, QIAN J L, WANG Y C, et al. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19:The role of neuroinflammation[J]. Ageing Research Reviews, 2024, 97(6):102288.
[9] SEO B S, LEE H J, MO J H, et al. Treatment of postviral olfactory loss with glucocorticoids, Ginkgo biloba, and mometasone nasal spray[J]. Archives of Otolaryngology-Head & Neck Surgery, 2009,135(10):1000-1004.
[10] CRISAFULLI U, XAVIER A M, dos SANTOS F B, et al. Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium[J]. Frontiers in Molecular Neuroscience, 2018, 11(6):00050.
[11] MA Y L (马艳丽), CHEN F H (陈付华), XIONG X X (熊小星),et al. Analysis of risk factors for postoperative olfactory disturbance in patients with chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology in Integrative Medicine (中国中西医结合耳鼻咽喉科杂志), 2024, 32(2):110-113, 148.
[12] ZHU W (朱为), WU H W (吴昊伟), XU D G (徐东刚). Research progress in roles of olfactory stimulation in improving cognitive dysfunction[J]. Military Medical Sciences (军事医学), 2024, 48(9):701-707.
[13] QU X Z (曲宣诏), LIU W (刘玮), WANG G Y (王圭垚), et al.Research progress of essential oils in respiratory tract infectious diseases[J]. Asia-Pacific Traditional Medicine (亚太传统医药),2021, 17(12):199-202.
[14] IKUSHIMA H, SUZUKI J, HEMMI T, et al. Effects of zinc deficiency on the regeneration of olfactory epithelium in mice[J].Chemical Senses, 2023, 48(8):bjad023.
[15] DAMM M, SCHMITL L, MÜLLER C A, et al. Diagnostik und therapie von riechstörungen[J]. HNO, 2019, 67(4):274-281.
[16] PATEL Z M. The evidence for olfactory training in treating patients with olfactory loss[J]. Current Opinion in Otolaryngology & Head and Neck Surgery, 2017, 25(1):43-46.
[17] SCOTT J W, WELLIS D P, RIGGOTT M J, et al. Functional organization of the main olfactory bulb[J]. Microscopy Research and Technique, 1993, 24(2):142-156.
[18] GOLDSTEIN B J, GOSS G M, HATZISTERGOS K E, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons[J]. Journal of Comparative Neurology, 2015,523(1):15-31.
[19] PINNA F, CTENAS B, WEBER R, et al. Olfactory neuroepithelium in the superior and middle turbinates:Which is the optimal biopsy site?[J]. International Archives of Otorhinolaryngology, 2014, 17(2):131-138.
[20] HÜTTENBRINK K B, HUMMEL T, BERG D, et al. Olfactory dysfunction:Common in later life and early warning of neurodegenerative disease[J]. Deutsches Ärzteblatt International, 2013, 110(1/2):1-7.
[21] XU X Q (徐秀钦), ZHAO Q Y (赵琪余), SHEN Y (沈旸), et al.Analysis of anxiety and depression status and its influencing factors in patients with olfactory dysfunction after SARS-CoV-2 infection[J].Chinese Journal of Otorhinolaryngology-Skull (中国耳鼻咽喉颅底外科杂志), 2024, 30(3):91-97.
[22] HUMMEL T, WHITCROFT K L, ANDREWS P, et al. Position paper on olfactory dysfunction[J]. Rhinology Journal, 2017, 54(26):1-30.
[23] MENNI C, VALDES A M, FREIDIN M B, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19[J]. Nature Medicine, 2020, 26(5):1037-1040.
[24] PAN H D, NIU J Y, FENG L, et al. COVID-19 and cognitive impairment:From evidence to SARS-CoV-2 mechanism[J]. Brain-X,2024, 2(2):e58.
[25] BRANN D H, TSUKAHARA T, WEINREB C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia[J].Science Advances, 2020, 6(31):eabc5801.
[26] SUNGNAK W, HUANG N, BERG M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes[J]. Nature Medicine, 2020, 26(5):681-687.
[27] MÜLLER A, MÜNGERSDORF M, REICHMANN H, et al.Olfactory function in Parkinsonian syndromes[J]. Journal of Clinical Neuroscience, 2002, 9(5):521-524.
[28] DOTY R L. Olfactory dysfunction in neurodegenerative diseases:Is there a common pathological substrate[J]. The Lancet Neurology,2017, 16(6):478-488.
[29] FRANCO J, PREDIGER R D S, PANDOLFO P, et al. Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats:Increased susceptibility of olfactory bulb[J]. Life Sciences, 2007,80(20):1906-1914.
[30] BOHNEN N I, MÜLLER M L T M, KOTAGAL V, et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease[J]. Brain:A Journal of Neurology, 2010, 133(6):1747-1754.
[31] SOLER Z M, YOO F, SCHLOSSER R J, et al. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis[J].International Forum of Allergy & Rhinology, 2020, 10(3):343-355.
[32] PFAAR O, LANDIS B N, FRASNELLI J, et al. Mechanical obstruction of the olfactory cleft reveals differences between orthonasal and retronasal olfactory functions[J]. Chemical Senses,2006, 31(1):27-31.
[33] SELVARAJ S, LIU K, ROBINSON A M, et al. In vivo determination of mouse olfactory mucus cation concentrations in normal and inflammatory states[J]. PlosOne, 2012, 7(7):e39600.
[34] WU J, CHANDRA R K, LI P, et al. Olfactory and middle meatal cytokine levels correlate with olfactory function in chronic rhinosinusitis[J]. The Laryngoscope, 2018, 128(9):E304-E310.
[35] WANG Y (王颖), LI L (李琳), HU J (胡静). Compound screening and synergistic antibacterial properties of litsea cubeba essential oils[J]. Fine Chemicals (精细化工), 2023, 40(1):146-152.
[36] JING Z X, LI W Q, LIAO W, et al. Fructus xanthii and magnolia liliiflora volatile oils liposomes-loaded thermosensitive in situ gel for allergic rhinitis management[J]. International Journal of Nanomedicine,2024, 19(2):1557-1570.
[37] GAO Q (高琼), ZANG Y P (臧云鹏), LIU W (刘稳). Analysis of risk factors for postoperative olfactory disturbance in patients with chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology in Integrative Medicine (中国医药导报), 2024, 21(6):26-29.
[38] HAN P F, MUSCH M, ABOLMAALI N, et al. Improved odor identification ability and increased regional gray matter volume after olfactory training in patients with idiopathic olfactory loss[J].I-Perception, 2021, 12(2):1-11.
[39] HU B, ZHANG J Y, GONG M D, et al. Research progress of olfactory nerve regeneration mechanism and olfactory training[J].Therapeutics and Clinical Risk Management, 2022, 18(3):185-195.
[40] MARIN C, LAXE S, LANGDON C, et al. Olfactory training prevents olfactory dysfunction induced by bulbar excitotoxic lesions:Role of neurogenesis and dopaminergic interneurons[J]. Molecular Neurobiology,2019, 56(12):8063-8075.
[41] HOSSEINI K, ZARE-SADEGHI A, SADIGH-ETEGHAD S, et al.Effects of olfactory training on resting-state effective connectivity in patients with posttraumatic olfactory dysfunction[J]. Acta Neurobiologiae Experimentalis, 2020, 80(4):381-388.
[42] DUAN Q L (段青鸾), LIN K (林珂). Application progress of olfactory training in chronic sinusitis patients with olfactory disorder[J]. Journal of Nurses Training, 2023, 38(7):602-606.
[43] GELLRICH J, HAN P, MANESSE C, et al. Brain volume changes in hyposmic patients before and after olfactory training[J]. The Laryngoscope, 2018, 128(7):1531-1536.
[44] MACDONALD M K. An experimental study of Henning's system of olfactory qualities[J]. The American Journal of Psychology, 1922,33(4):535-553.
[45] KOYAMA S, HEINBOCKEL T. The effects of essential oils and terpenes in relation to their routes of intake and application[J].International Journal of Molecular Sciences, 2020, 21(5):1558.
[46] GHASEMNEJAD-BERENJI M. Immunomodulatory and antiinflammatory potential of crocin in COVID-19 treatment[J]. Journal of Food Biochemistry, 2021, 45(5):e13718.
[47] LE N P K, HERZ C, GOMES J V D, et al. Comparative antiinflammatory effects of Salix cortex extracts and acetylsalicylic acid in SARS-CoV-2 peptide and LPS-activated human in vitro systems[J].International Journal of Molecular Sciences, 2021, 22(13):6766.
[48] SILVESTRINI A, GIORDANI C, BONACCI S, et al. Antiinflammatory effects of olive leaf extract and its bioactive compounds oleacin and oleuropein-aglycone on senescent endothelial and small airway epithelial cells[J]. Antioxidants, 2023, 12(8):1509.
[49] JANGAM A, TIRUNAVALLI S K, ADIMOOLAM B M, et al. Antiinflammatory and antioxidant activities of Gymnema Sylvestre extract rescue acute respiratory distress syndrome in rats via modulating the NF-κB/MAPK pathway[J]. Inflammopharmacology, 2023, 31(2):823-844.
[50] PATANGRAO R A, KUMAR B A, KUMAR B K, et al. Vincamine,an active constituent of Vinca rosea ameliorates experimentally induced acute lung injury in Swiss albino mice through modulation of Nrf-2/NF-κB signaling cascade[J]. International Immunopharmacology,2022, 108(7):108773.
[51] CHEN R, YANG Y Q, XU J K, et al. Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology, 2018, 40(2):10-19.
[52] SEO K H, CHOI S Y, JIN Y, et al. Anti-inflammatory role of Prunus persica L. Batsch methanol extract on lipopolysaccharide-stimulated glial cells[J]. Molecular Medicine Reports, 2020, 21(5):2030-2040.
[53] JAVADIAN S, SABOUNI F, HAGHBEEN K. Origanum Vulgare L.extracts versus thymol:An anti-inflammatory study on activated microglial and mixed glial cells:Oregano antioxidant and anti-Inflammatory effects[J]. Journal of Food Biochemistry, 2016, 40(1):100-108.
[54] SUN X Y (孙向阳), FENG Z Y (冯振宇), HU M L (胡明丽).Observation on clinical efficacy of compound menthol naristilla combined with ribavirin granules in treatment of viral cold[J].Journal of Shanxi University of Chinese Medicine (山西中医药大学学报), 2023, 24(5):575-578.
[55] BUI T T, PIAO C H, HYEON E, et al. The protective role of Piper nigrum fruit extract in an ovalbumin-induced allergic rhinitis by targeting of NFκBp65 and STAT3 signalings[J]. Biomedicine &Pharmacotherapy, 2019, 109(1):1915-1923.
[56] HANCI D, ALTUN H, ÇETINKAYA E A, et al. Cinnamaldehyde is an effective anti-inflammatory agent for treatment of allergic rhinitis in a rat model[J]. International Journal of Pediatric Otorhinolaryngology,2016, 84(5):81-87.
[57] JIN J (金婧), LENG H (冷辉). Progress in treatment of olfactory dysfunction following SARS-Cov-2[J]. Journal of Otolaryngology and Ophthalmology of Shandong University (山东大学耳鼻喉眼学报), 2023, 37(5):162-174.
[58] SHI T H, HUANG Y L, CHEN C C, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage[J]. Biochemical and Biophysical Research Communications, 2020, 533(3):467-473.
[59] MURAMATSU T, TAKEMOTO C, KIM Y T, et al. SARS-CoV 3CL protease cleaves its C-terminal auto processing site by novel subsite cooperativity[J]. Proceedings of the National Academy of Sciences,2016, 113(46):12997-13002.
[60] KULKARNI S A, NAGARAJAN S K, RAMESH V, et al.Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein[J]. Journal of Molecular Structure, 2020, 1221(12):128823.
[61] KETEBCHI S, PAPARI M M. A review on the effective natural compounds of medicinal plants on the COVID-19[J]. Natural Product Research, 2024, 38(3):1-14.
[62] STOJANOVIĆ N M, MLADENOVIĆ M Z, MASLOVARIĆ A, et al.Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms-In vitro and in vivo studies[J].Journal of Ethnopharmacology, 2022, 284(2):114788.
[63] OGATA N, TAGISHI H, TSUJI M. Inhibition of acetylcholinesterase by wood creosote and simple phenolic compounds[J]. Chemical and Pharmaceutical Bulletin, 2020, 68(12):1193-1200.
[64] FIRDAUS Z, GUTTI G, GANESHPURKAR A, et al. Centella asiatica improves memory and executive function in middle-aged rats by controlling oxidative stress and cholinergic transmission[J].Journal of Ethnopharmacology, 2024, 325(5):117888.
[65] BHATTACHARYA K, BHATTACHARJEE A, CHAKRABORTY M.Assessing the potential of Psidium guajava derived phytoconstituents as anticholinesterase inhibitor to combat Alzheimer's disease:An in-silico and in-vitro approach[J]. Journal of Biomolecular Structure& Dynamics, 2024, 42(1):1-18.
[66] ZHAO C Q (赵长青), WANG Y J (王艳杰), CHENG F L (程冯丽),et al. Neuroimmune mechanisms involved in allergic rhinitis and its clinical implications[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery (中国耳鼻咽喉颅底外科杂志), 2024, 30(5):1-5.
[67] KAWAMOTO Y, UENO Y, NAKAHASHI E, et al. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation[J]. The Journal of Nutritional Biochemistry, 2016, 27(1):112-122.
[68] RIBEIRO-FILHO J, da SILVA BRANDI J, FERREIRA C H, et al.Carvone enantiomers differentially modulate IgE-mediated airway inflammation in mice[J]. International Journal of Molecular Sciences,2020, 21(23):9209.
[69] ZHANG X L (张小磊), LI X M (李秀敏), MIAO M S (苗明三).Pharmacological effects of essential oil inhalation based on clinical application characteristics and its mechanism[J]. Pharmacology and Clinics of Chinese Materia Medica (中药药理与临床), 2024, 40(10):123-128.
[70] GUO Z N (郭子宁), ZHOU L L (周露露), HU J (胡静). Preparation and application of flavor and fragrance micro/nanocapsules[J].Leather Science and Engineering (皮革科学与工程), 2023, 33(5):33-39.
[71] RINALDI F, OLIVA A, SABATINO M, et al. Antimicrobial essential oil formulation:Chitosan coated nanoemulsions for nose to brain delivery[J]. Pharmaceutics, 2020, 12(7):678.
[72] WU Y (吴意), WAN N (万娜), LIU Y (刘阳), et al. Stability improvement of Chinese medicinal essential oils based on delivery systems and their application in medical field[J]. China Journal of Chinese Materia Medica (中国中药杂志), 2022, 47(3):603-610.
[73] KULBAY M, WU K Y, TRUONG D, et al. Smart molecules in ophthalmology:Hydrogels as responsive systems for ophthalmic applications[J]. Smart Molecules, 2024, 1(2):e20220003.
[74] ZHANG W J, WANG J Y, LI H, et al. Novel application of natural anisole compounds as enhancers for transdermal delivery of ligustrazine[J]. The American Journal of Chinese Medicine, 2015,43(6):1231-1246.
[75] MURA S, MANCONI M, FADDA A M, et al. Penetration enhancercontaining vesicles (PEVs) as carriers for cutaneous delivery of minoxidil:In vitro evaluation of drug permeation by infrared spectroscopy[J]. Pharmaceutical Development and Technology, 2013,18(6):1339-1345.
[76] MALVEIRA C J, HENRIQUE L J, LEITE D L R, et al. The essential oil of Croton zehntneri and trans-anethole improves cutaneous wound healing[J]. Journal of Ethnopharmacology, 2012, 144(2):240-247.
[77] LYU X N, LIU Z J, ZHANG H J, et al. Aromatherapy and the central nerve system (CNS):Therapeutic mechanism and its associated genes[J]. Current Drug Targets, 2013, 14(8):872-878.
Research progress of essential oils in restoring olfactory dysfunction
王希奥(2000—),女,硕士生,E-mail:wxa232401120117@163.com。
联系人:周露露(1996—),女,讲师,E-mail:zll@sit.edu.cn;胡 静(1982—),女,教授,E-mail:hujing616@126.com。
X