水处理技术与环境保护

表面磷酸化 CeO2 选择性还原 NO 及其碱金属耐受性

李 顺,胡方方,王闻之,蔡思翔*,姜 宏

(海南大学 材料科学与工程学院,南海海洋资源利用国家重点实验室,海南省特种玻璃重点实验室,海南 海口 570228)

摘要:以 Ce(NO₃)₃•6H₂O 和(NH₄)₃PO₄•3H₂O 为原料,采用浸渍法制备了磷酸化 CeO₂催化剂。以 NH₃ 为还原剂, 考察了磷酸化 CeO₂催化剂氨选择性催化还原(NH₃-SCR)NO 的脱硝性能。利用 XRD、N₂吸附-脱附、XPS、 NH₃-TPD、原位漫反射红外光谱对催化剂结构和性能进行了表征。结果表明,在 250~500 ℃范围内,磷酸化 CeO₂催化剂(CeP_{0.05})使 NO 的转化率在 90%以上,且在碱金属和碱土金属中毒后,在 300~400 ℃范围内,磷 酸化 CeO₂催化剂使 NO 的转化率仍保持在 80%以上。磷酸化 CeO₂催化性能的增强可归因于酸位点数量的增加, 尤其是 Brønsted 酸位点数量的增加。磷酸化改性产生更多的 Ce³⁺和化学吸附氧,提高了催化剂的氧化还原能力。 当碱金属沉积在催化剂上时,碱金属被诱导迁移到磷酸化 CeO₂的表面与 Ce—O—P 碱捕获位点结合,从而阻止 碱金属攻击 Ce⁴⁺活性位点。

关键词: CeO₂;磷酸化;氨选择性催化还原;碱金属耐受性;氮氧化物;环境保护 中图分类号: X701; TQ426 文献标识码: A 文章编号: 1003-5214 (2022) 05-0995-10

Surface phosphorylation of CeO₂ for selective reduction of NO and its alkali metal tolerance

LI Shun, HU Fangfang, WANG Wenzhi, CAI Sixiang^{*}, JIANG Hong

(State Key Laboratory of Marine Resources Utilization of the South China Sea, Special Glass Laboratory of Hainan Province, College of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China)

Abstract: Phosphorylated CeO₂ catalysts were firstly prepared by impregnation method using Ce(NO₃)₃•6H₂O and (NH₄)₃PO₄•3H₂O as raw materials, and then its denitration performance over selective catalytic reduction of NO using NH₃ as reducing agent (NH₃-SCR) was investigated. The structures and properties of catalysts were characterized by XRD, N₂ adsorption-desorption, XPS, NH₃-TPD and *in situ* DRIFTS. The results showed that the NO conversion rate was more than 90% in temperature range 250~500 °C, and remained above 80% in the range of 300~400 °C even after phosphorylated CeO₂ catalyst was poisoned by alkali metals and alkaline earth metals. The enhanced catalytic performance of phosphorylated CeO₂ was attributed to the increase in the number of acid, especially Brønsted acid sites. The phosphorylation modification produced more Ce³⁺ and chemisorbed oxygen, which improved the redox capacity of the catalyst. When deposited on the catalyst, the alkali metals were induced to migrate to the surface of phosphorylated CeO₂ and bound to the Ce—O—P base capture site, being prevented from attacking the Ce⁴⁺ active site.

Key words: CeO₂; phosphorylation; NH₃-SCR; alkali metal tolerance; nitrogen oxides; environmental protection

氦氧化物(NO_x)是主要的大气污染物之一, 会带来诸如光化学烟雾、PM_{2.5}、臭氧层破坏、酸雨 等一系列问题^[1-2]。目前,使用氨气作为还原剂选择 性催化还原 NO_x(NH₃-SCR)的技术是应用最广且

收稿日期: 2021-11-19; 定用日期: 2022-03-20; DOI: 10.13550/j.jxhg.20211128

基金项目:海南省自然科学基金青年基金项目(221QN0859);海南省重点研发计划项目(ZDYF2020015);海南大学科研平台建设(ZY2019HN09)

作者简介: 李 顺(1996—), 男, 硕士生, E-mail: 1208808626@qq.com。**联系人:** 蔡思翔(1991—), 男, 博士, 讲师, 硕士生导师, E-mail: 993049@hainanu.edu.cn。

最成熟的技术,具有优异催化性能的催化剂是 NH₃-SCR 技术的核心。其中,已经商用的催化剂是用于 燃煤电厂和柴油车尾气处理的 V₂O₅-WO₃(MoO₃)/ TiO₂^[3]。但其存在以下缺点:(1)活性温度区间窄 (300~400 ℃);(2)含有有毒的 V₂O₅;(3)对碱 金属以及碱土金属的耐受性差^[4-5]。因此,亟需环境 友好的具有碱金属抗性的非钒催化剂用于 NH₃-SCR。

CeO2具有优异的储氧能力和还原性, 被认为是 NH3-SCR 催化剂的良好活性组分^[6]。但是 CeO2 的酸 位不足,在反应中会导致氨的非选择性氧化^[7],致 使其催化性能较差。另外,在燃煤/生物电厂、玻璃 炉等固定源产生的烟气中含有大量碱金属或碱土金 属(K、Na、Ca)^[8-12],碱金属或碱土金属原子可 以与催化剂中的氧原子相互作用,导致催化剂的还 原性和表面酸度降低^[13]。因此,需要对 CeO₂ 进行 改性提高其催化活性和碱金属耐受性。有报道对 CeO2基催化剂进行了酸性增强改性。一种策略是硫 酸化增强 CeO2 酸性,以此提高催化剂对 NH3 的吸 附能力^[10]。但是, 硫酸化形成的 Ce-O-S 键的键 能较强,较强的 Ce-O-S 键的键能抑制了 Ce4+和 Ce3+之间的氧化还原循环,减少了化学吸附氧,导 致催化剂氧化还原性能降低[14]。良好的氧化还原能 力有助于催化剂吸附的 NO 和 NH3 的活化,可以提 高催化剂的催化活性[15]。与引入硫酸相比,磷酸具 有适宜的酸性、热稳定性和离子交换能力。其应可 对用于 NH₃-SCR 的 CeO₂进行改性。

基于以上分析,本文利用磷酸对 CeO₂表面进行 改性,以期增强 CeO₂表面酸位,并利用酸位提升 CeO₂的氨吸附活化能力与构建抗碱中心。运用 XRD、XPS、N₂吸附-脱附、NH₃-TPD、原位红外对 催化剂的结构和性能进行了表征,探索了磷酸化在 碱金属耐受性上起到的积极作用,观察 CeO₂和磷酸 化 CeO₂表面碱金属中毒前后的反应行为。磷酸化 CeO₂ 催化剂在燃煤/生物电厂等固定源产生的烟气 中去除 NO_x方面具有一定的应用价值。

1 实验部分

1.1 试剂与仪器

Ce(NO₃)₃•6H₂O、(NH₄)₃PO₄•3H₂O,AR,上海 麦克林生化科技有限公司;KNO₃,GR,西亚化学 科技(山东)有限公司;Ca(NO₃)₂、Mg(NO₃)₂、NaNO₃, AR,广州化学试剂厂。

3KW D/MAX2200V X 射线衍射仪,日本 Rigaku 公司;ASAP 2460 比表面与孔隙度分析仪、Autochem II 2920 化学吸附仪,美国 Micromeritics 公司; ESCALAB Xi+ X 射线光电子能谱仪、Nicolet iS50 傅里叶变换红外光谱仪,美国 Thermo Fisher Scientific 公司。

1.2 制备

空气气氛下, Ce(NO₃)₃•6H₂O 在管式炉中 500 ℃ 煅烧 5h, 升温速率为 5 ℃/min, 得到 CeO₂。磷酸 化 CeO₂ 催化剂(CeP_x)的制备过程如下:将 4 g (23.24 mmol)CeO₂分散在 100 mL 去离子水中, 加 入一定量的(NH₄)₃PO₄•3H₂O, 搅拌 20 min 使其溶解, 使用旋转蒸发仪在 70 ℃下旋蒸得到粉末。将粉末 在管式炉中 500 ℃煅烧 5 h, 升温速率为 5 ℃/min, 制得 CeP_x催化剂[P和 Ce 的物质的量比为x,x=0.01、 0.05、0.1、0.2、0.4]。

含量为 1% (以催化剂的质量为基准,下同) K₂O 中毒的催化剂制备:取 1 g CeO₂ 或 CeP_{0.05} 分散 在 50 mL 去离子水中,然后加入 0.021 g KNO₃,搅 拌 20 min 使其溶解,使用旋转蒸发仪在 70 ℃下旋 蒸制得粉末。再将粉末放入管式炉中 500 ℃煅烧 5 h,升温速率为 5 ℃/min,制得催化剂表示为 K/CeO₂ 或 K/CeP_{0.05}。含量为 1% Na₂O、CaO 和 MgO 中毒催化剂的制备方法和 K₂O 中毒催化剂相同, Ca(NO₃)₂、Mg(NO₃)₂和 NaNO₃的加入量分别为 0.030、0.037 和 0.028 g,制得的催化剂分别命名为 Ca/CeP_{0.05}、Mg/CeP_{0.05}和 Na/CeP_{0.05}。

1.3 结构表征

XRD 用于分析催化剂的晶体结构, Cu K_a射线 源, 2 θ 范围是 10°~80°。为了研究催化剂的比表面 积、孔容及孔径,在比表面与孔隙度分析仪上进行 了-196 ℃下的 N₂ 吸附和解吸实验,预处理时间为 5 h。XPS 在 X 射线光电子能谱仪上进行,所有结合 能均通过碳峰(C 1s 的结合能为 284.6 eV)进行校 正。NH₃-TPD 测试在化学吸附仪上完成,将 50~ 100 mg 样品先用氦气加热到 300 ℃预处理 1 h 后, 降温至 50 ℃。然后通入体积分数为 5%的 NH₃,并 在 50 ℃吹扫1 h,基线稳定后,从 50 ℃以 10 ℃/min 的速率升至 500 ℃。NH₃-TPD 曲线的积分面积使用 Origin 软件对曲线进行积分得到。

使用傅里叶变换红外光谱仪进行原位红外光谱 测试。红外光谱在 1000~1800 cm⁻¹范围内收集,以 4 cm⁻¹分辨率累积 64 次扫描。每个样品在 400 ℃下 用体积分数为 99.999%的 N₂ 预处理 0.5 h,并在程序 冷却过程中每 50 ℃采集一次背景。对于 NH₃ 的吸 附和解吸,催化剂在 200 ℃通入体积分数 0.1% NH₃ (N₂为平衡气体)。然后从 200 ℃以 5 ℃/min 的速 率升至 400 ℃,每 50 ℃采集一次数据。对于 NO+O₂ 和预吸附的 NH₃之间的反应,催化剂在 250 ℃通入 体积分数 0.1%的 NH₃中吸附 1 h 后,将 NH₃ 切换为 N₂ 吹扫 15 min。关闭 N₂ 再通入体积分数为 0.1% NO+体积分数 15% O₂,同时打开自动采样程序,连续采谱 60 min。

1.4 活性测试

催化剂活性测试在固定床石英反应器中进行, 反应温度范围为 150~500 ℃,以 10 ℃/min 的升温 速率进行程序升温。将 300 mg 催化剂(40~60 目) 加入到石英管(内径:8 mm)中。反应气体组成如 下:体积分数为 0.05% NO、0.05% NH₃、0.01% SO₂ (使用时),体积分数 5% O₂和 N₂作为平衡气体。 总流速为 200 mL/min,空速(GHSV)=60000/h。 用烟气分析仪测量 NO、N₂和 O₂的浓度。NO 转化 率达到 90%时,对应的反应温度记为 T₉₀。最后,样 品的 NO 转化率通过下式计算:

*C*_{NO}/%=(*φ*_{in}−*φ*_{out})/*φ*_{in}×100 (1) 式中: *C*_{NO}/%为 NO 转化率,%;*φ*_{in} 和 *φ*_{out} 分别为进、 出反应器的气体中 NO 的体积分数,%。

2 结果与讨论

2.1 XRD 和 N₂ 吸附-脱附分析

CeO₂、CeP_{0.01}、CeP_{0.05}、CeP_{0.1}、CeP_{0.2}、CeP_{0.4}、 K/CeO₂和 K/CeP_{0.05}的 XRD 谱图如图 1a 所示。

图 1 催化剂的 XRD 谱图 (a) 及放大的 (111) 衍射峰 (b) Fig. 1 XRD spectra (a) and enlarged (111) diffraction peaks (b) of the catalyst

图 1a 中,在 2*θ*=28.6°、33.1°、47.5°、56.4°、 59.1°、69.4°、76.7°和 79.1°处出现归属于萤石型 CeO₂ 结构的(111)、(200)、(220)、(311)、(222)、(400)、 (331)和(420)晶面特征衍射峰(JCPDS No. 34-0394)^[16]。当 P 的投料量较低时,除 CeO₂特征 峰外,未发现 P 物种的衍射峰,可能是 P 以无定型 的磷酸盐的形式存在,或者 P 的含量低于 XRD 检测 限所致^[1,17]。当 P 的投料量增加时,在 CeP_{0.2}和 CeP_{0.4} 谱图中, 2*θ*=27.0°、31.1°和 42.4°处出现归属于独居 石型 CePO₄结构的(200)、(012)和(221)晶面特 征衍射峰(JCPDS No. 32-0199)。而且所有图像均 未出现钾的衍射峰,说明钾物种良好的分散在催化 剂表面。

此外, 萤石型 CeO₂ 特征峰的强度随着 P 负载量 的增加而逐渐降低(如图 1b 所示), 这表明 P 的引 入抑制了 CeO₂ 晶粒的生长; 衍射峰也向高角度方向 移动, 这可能是由于部分磷物种以离子形式(P⁵⁺) 进入 CeO₂ 的萤石结构导致晶格常数改变所致。

CeO₂、CeP_{0.01}、CeP_{0.05}、CeP_{0.1}、CeP_{0.2}、CeP_{0.4}、 K/CeO₂和K/CeP_{0.05}的比表面积、孔容、孔径列于表 1。表1中,与CeO₂相比,磷酸改性后催化剂的比 表面积和孔容减小,而孔径增加,这可能是由于 P 物种覆盖在原催化剂的表面并堵塞在孔中^[12]。由于 K⁺物种的表面覆盖效应,两种中毒催化剂样品的孔 容和比表面积均低于相应的未中毒催化剂样品^[18]。 为简化实验,下文选择CeP_{0.05}、K/CeP_{0.05}、CeO₂和 K/CeO₂催化剂进行 XPS、NH₃-TPD 和原位红外分 析,探究磷酸改性和K⁺中毒对CeP_{0.05}和CeO₂催化 剂表面元素组成、表面酸性和催化机理的影响。

表1 催化剂的比表面积、孔容和孔径

Table	1	Specific	surface	area,	pore	volume	and	pore
		diameter of catalysts						

样品	比表面积/(m²/g)	孔径/nm	孔容/(cm ³ /g)
CeO ₂	62.28	14.5	0.215
$CeP_{0.01}$	57.07	15.3	0.211
$CeP_{0.05}$	49.71	17.6	0.207
$CeP_{0.1}$	57.73	15.1	0.209
$CeP_{0.2}$	34.95	18.4	0.142
$CeP_{0.4}$	14.73	15.7	0.054
K/CeO_2	51.03	15.7	0.201
K/CeP _{0.05}	49.50	16.8	0.199

2.2 XPS 分析

CeP_{0.05}、K/CeP_{0.05}、CeO₂和 K/CeO₂ 催化剂的 XPS 谱图见图 2。如图 2a 所示,4 种催化剂的 Ce 3d XPS 光谱被分为 8 个特征峰^[19]。位于 901.0、907.7 和 916.8 eV 的特征峰分别标记为 u、u₂和 u₃。这些 峰是 Ce⁴⁺ 3d_{3/2}的特征峰。882.5、888.9 和 898.4 eV 处的特征峰归属于 Ce⁴⁺3d_{5/2},分别标记为 v、v₂和 v₃。Ce³⁺的特征峰位于 903.2 和 884.8 eV,分别标记 为 u₁和 v₁^[20]。表 2 为 4 种催化剂表面元素的摩尔分 数计算结果。4 种催化剂表面,Ce³⁺的摩尔分数 [$n(Ce^{3+})/n(Ce^{3+}+Ce^{4+})$]分别为 15.7%、11.3%、21.5%

和 17.6%。CeO, 磷酸化后 Ce³⁺的摩尔分数从 CeO, 的 15.7% 增加到 CeP_{0.05} 的 21.5%。较高的 Ce³⁺摩尔 分数可以产生更多的不饱和键和氧空位,有利于 NO 的吸附和氧化^[21]。K⁺中毒后, CeP_{0.05}上 Ce³⁺的摩尔 分数从 CeP0.05 的 21.5%下降到 K/CeP0.05 的 17.6%,可 能是由于 K⁺的添加可以抑制 Ce⁴⁺向 Ce³⁺的转化^[22]。 但 K/CeP005 中 Ce³⁺的摩尔分数(17.6%)仍高于 K/CeO₂(11.3%),这表明磷酸改性可以有效缓解 K^+ 对磷酸化 CeO₂催化剂的影响。从表 2 可以看出, K/CeP_{0.05} 表面的钾摩尔分数(2.38%)明显大于 K/CeO₂(1.64%),可能是由于 CeO₂ 表面磷酸盐固 定了 K^+ , 阻止其向催化剂内部迁移。P 在 CeP₀₀₅催 化剂中的摩尔分数为 7.61%, n(P)/n(Ce)=0.393, 与 实际投料量 [n(P)/n(Ce)=0.05] 相比变大, 可以认为 磷酸化 CeO₂的 P 物种主要集中于催化剂表面,可以 增进催化剂表面的酸位分布,对催化剂的活性与碱 金属耐受性有利。

表 2 新鲜催化剂和 K^+ 中毒催化剂的 XPS 测试结果 Table 2 XPS results of the fresh and K^+ poisoned catalysts

					1	5
样品	x(Ce)/ %	x(O)/ %	x(P)/ %	x(K)/ %	$[n(Ce^{3^+})/n(Ce^{3^+}+Ce^{4^+})]/\%$	$\frac{[n(\mathrm{O}_\beta)/}{n(\mathrm{O})]/\%}$
CeO ₂	25.17	74.83	_	_	15.7	32.4
K/CeO ₂	23.46	74.90	—	1.64	11.3	22.8
$CeP_{0.05}$	19.36	73.04	7.61	—	21.5	40.2
K/CeP _{0.05}	18.76	71.33	7.53	2.38	17.6	35.6

注: n(O)为 $n(O_{\alpha})$ 、 $n(O_{\beta})$ 、 $n(O_{\gamma})$ 的总和。

CeP_{0.05}、K/CeP_{0.05}、CeO₂和 K/CeO₂催化剂的 O 1s XPS 谱图如图 2b 所示。曲线拟合后, CeO₂和 K/CeO_2 的 O 1s XPS 谱图主要为晶格氧(记为 O_a) 和化学吸附氧(记为 O_{β}),磷酸化后, CeP_{0.05} 和 K/CeP_{0.05}出现羟基基团(记为O_v)^[23]。CeP_{0.05}催化 剂的化学吸附氧摩尔分数(40.2%)比 CeO₂(32.4%) 高得多。与 CeO_2 相比, $CeP_{0.05}$ 的 O_{α} 结合能移动到 更高值,这可能是由于更多 Ce³⁺造成的氧缺陷和 Ce-O-P的存在所致。K⁺中毒后, CeP_{0.05}的化学 吸附氧摩尔分数从 CeP0.05 的 40.2%下降到 K/CeP0.05 的 35.6%, K/CeO2 催化剂的化学吸附氧摩尔分数下 降更多, 只有 22.8%。化学吸附氧在 NH3-SCR 反 应中起到重要作用,其可以将 NO 氧化为 NO₂,进 行快速 SCR 过程: NO+NO₂+2NH₃=2N₂+3H₂O^[24]。 CeP_{0.05}和 K/CeP_{0.05}的 P 2p 的 XPS 谱图见图 2c。 与 CeP_{0.05} 相比, 位于 133.3 eV 的 P 2p 特征峰在 K/CeP_{0.05}中向高结合能处偏移,证明 PO₄³⁻能够诱 导 K⁺与其进行优先结合,从而保护催化剂表面的 活性位点。

2.3 NH₃-TPD 分析

为了更好地了解催化剂样品的表面酸度,进行 了 NH₃-TPD 分析,结果如图 3 所示。每个催化剂均 在 100~500 ℃温度范围内出现连续解吸峰, 这是由 于存在具有不同热稳定性的各种酸位,包括物理吸 附和弱吸附的酸位(100~200 ℃)、中强吸附的酸位 (200~400 ℃)^[25]。CeP_{0.05} 具有最好的 NH₃ 吸附能 力,在150~500 ℃的范围内呈现出较宽的脱附峰, 这是由于磷酸盐提供的中强酸位所致。每个催化剂 的 NH₃吸附容量和 NH₃-TPD 曲线积分得到的面积 成正比, CeP_{0.05}、K/CeP_{0.05}、CeO₂和K/CeO₂催化剂 的 NH₃-TPD 曲线积分面积如表 3 所示。CeO₂磷酸 化后,CeO2的NH3-TPD曲线积分面积从15665.6 a.u. 提升到 CeP_{0.05} 的 27959.4 a.u.。K⁺中毒后, CeO₂ 和 CeP0.05 表面酸度都受到了不同程度的破坏,但是 K/CeP005的积分面积是 K/CeO2的 2.06 倍。因此, 磷酸化 CeO2 由于具有更丰富的表面酸性,更强的氨 气吸附能力,不仅提高了 CeO2 的催化活性,还提高 了催化剂的抗碱能力。

图 3 催化剂的 NH₃-TPD 曲线 Fig. 3 NH₃-TPD profiles of catalysts

表	3	催化剂的 NH ₃ -TPD 曲线积分面积
Table 3	In	egral areas of NH ₃ -TPD curves of catalysts

样品	积分面积/a.u.
CeO ₂	15665.6
K/CeO ₂	3968.9
CeP _{0.05}	27959.4
K/CeP _{0.05}	8186.1

2.4 原位红外分析

通过原位红外光谱研究了磷酸化处理前后的 CeO₂ 催化剂对反应物物种吸附及其表面反应过程 的影响。

2.4.1 NH3吸附

为了进一步确定催化剂对 NH₃吸附情况,在升 温的情况下进行了 NH3 吸附的原位红外实验。NH3 吸附在 CeO2和 CeP005上的红外光谱如图 4a、c 所 示。CeO2在吸附 NH3后, 1278 和 1157 cm⁻¹ 处吸收 峰属于 Lewis 酸(L)位点上 N-H 的对称弯曲振动吸 收峰^[26-28]; 1537 和 1510 cm⁻¹处吸收峰可归属于氧 化中间体(-NH2)中N-H键的剪式振动吸收峰^[29]。 CeP005 在吸附 NH3后,在 1595 和 1253 cm⁻¹ 处出现 了归属于 Lewis 酸位点上吸附的 NH₃的 N-H 键的 对称和不对称弯曲振动吸收峰^[30-31]; 1505 cm⁻¹处出 现了归属于—NH2中 N—H 键的剪式振动吸收峰; 1678 和 1440 cm⁻¹ 处出现了强吸附在 Brønsted 酸(B) 位点上 NHth N—H 键的对称和不对称弯曲振动 吸收峰[32-33],其主要由磷酸盐产生。由于吸附的 NH₃物种的热分解, 1253、1440 和 1505 cm⁻¹等吸 收峰强度随着温度升高而变弱, CeP0.05 上吸附的 NH3具有很好的稳定性,在400 ℃下仍然存在。对 于两种中毒催化剂,NH3吸附在其上的红外光谱如 图 4b、d 所示。图 4b、d 中,吸收带强度远低于相 应新鲜样品的红外谱中的吸收带强度,表明 K 物种 抑制了 NH, 的吸附。K/CeO2 的 NH, 吸收带强度很 小,而 K/CeP005 仍然具有很强的 Lewis 酸位点和 Brønsted 酸位的吸附峰。因此,由于 CeP_{0.05}具有更

多 Lewis 酸位点和 Brønsted 酸位点,酸位的增多强 化了 NH₃的吸附和活化,所以磷酸改性使催化剂活 性更好。

图 4 CeO₂(a)、K/CeO₂(b)、CeP_{0.05}(c)、K/CeP_{0.05} (d)的 NH₃吸附-脱附原位漫反射红外谱图

- Fig. 4 In situ DRIFTS of $CeO_2(a)$, $K/CeO_2(b)$, $CeP_{0.05}(c)$ and $K/CeP_{0.05}(d)$ for NH_3 adsorption-desorption
- 2.4.2 NO_x 与预吸附的 NH₃ 物质之间的反应 为了探索吸附的 NH₃ 和 NO_x 物种之间的反应,

在 250 ℃下进行了预吸附 NH₃ 再通入 NO+O₂ 的原 位红外实验,结果如图 5 所示。

- 图 5 CeO₂(a)、K/CeO₂(b)、CeP_{0.05}(c)、K/CeP_{0.05}
 (d)在 250 ℃下预吸附 NH₃ 后通入 NO+O₂ 的原 位漫反射红外光谱图
- Fig. 5 In situ DRIFTS of CeO_2 (a), K/CeO_2 (b), $CeP_{0.05}$ (c) and $K/CeP_{0.05}$ (d) for NO+O₂ adsorption after preadsorption of NH₃ at 250 °C

从图 5a 可以看出,用 NH₃ 预处理 CeO₂,在其 表面产生了 Lewis 酸位点吸附的 NH₃ 的 N—H 键对

称弯曲振动吸收峰(1259 和 1164 cm⁻¹)和---NH₂ 的 N—H 键剪式振动吸收峰(1547 和 1519 cm⁻¹)。 引入 NO+O2后, 随着时间的延长, 所有峰逐渐变弱并 在 5 min 后消失。同时,出现了气态 NO₂的 N-O 键 的不对称伸缩振动吸收峰(1593 cm⁻¹)^[34]、双齿硝 酸盐的 N-O 的不对称伸缩振动吸收峰(1577 和 1543 cm⁻¹)、单齿亚硝酸盐的 N—O 键的不对称伸缩 振动吸收峰(1311 cm⁻¹)^[4]和桥连硝酸盐的 N-O 键 的不对称伸缩振动吸收峰(1240和1194 cm⁻¹)^[27,35], 几个吸附的 NO_x物种随着时间的延长而增多。从图 5c 可以看出, CeP0.05 催化剂在吸附 NH3 后表面产 生了 Lewis 酸位点吸附的 NH3 的 N-H 键不对称 和对称弯曲振动吸收峰(1590 和 1253 cm⁻¹)、 Brønsted 酸位点吸附的 NH₃的 N—H 键的对称和不 对称弯曲振动吸收峰(1675 和 1445 cm⁻¹)、--NH₂ 的 N-H 键的剪式振动吸收峰 (1505 cm⁻¹)。引入 NO_x后,随着时间的延长,吸附 NH₃的所有吸收峰 逐渐变弱并在 10 min 后消失, 双齿硝酸盐的 N-O 键不对称伸缩振动吸收峰(1568 cm⁻¹)^[36]和桥连硝 酸盐的 N-O 键不对称伸缩振动吸收峰(1240 cm⁻¹) 强度逐渐增强,这意味着吸附的 NO,物种取代了吸 附的 NH₃物种,即 CeP_{0.05} 催化剂上吸附的 NH₃物种 作为反应中间体参与了 NH3-SCR 反应。对于两种中 毒催化剂 (图 5b、d), K/CeO_2 对 NH₃的吸附较弱, NH₃吸附峰在通入 NO_x之后消失, 说明 K⁺中毒后的 CeO2表面的催化反应路径被完全切断,失活主要是 由于表面酸位被中和而减少,对 NH,的吸附和活化 功能降低所致。然而,磷酸化 CeO2在 K⁺中毒后催 化剂上仍然具有更多的 NH₃ 物种,在引入 NO_x后, 与 NO_x反应后消失。说明磷酸化 CeO₂在 K⁺中毒后 仍具有大量酸性位点,大量酸性位点保证了 NH₃的 吸附和活化,NH₃-SCR反应在 K^+ 中毒的磷酸化CeO₂ 上可以顺利进行。

2.4.3 NH3 与预吸附的 NOx 物质之间的反应

为了探索吸附的 NO_x和 NH₃物种之间的反应过 程,在 250 ℃下进行了预吸附 NO+O₂ 再通入 NH₃ 的原位红外测定,结果见图 6。

 图 6 CeO₂(a)、K/CeO₂(b)、CeP_{0.05}(c)、K/CeP_{0.05}
 (d)在 250 ℃下预吸附 NO+O₂ 后通入 NH₃ 的原 位漫反射红外光谱图

Fig. 6 In situ DRIFTS of CeO_2 (a), K/CeO_2 (b), $CeP_{0.05}$ (c) and $K/CeP_{0.05}$ (d) for NH₃ adsorption after preadsorption of NO+O₂ at 250 °C

从图 6a 可以看出, CeO₂在预吸附 NO+O₂后产 生了吸附的 NO₂的 N—O 键的不对称伸缩振动吸收 峰(1595 cm⁻¹)、双齿硝酸盐的 N—O 键的不对称伸 缩振动吸收峰(1579 和 1542 cm⁻¹)和桥连硝酸盐的 N—O 键的不对称伸缩振动吸收峰(1242 和 1200 cm⁻¹)。引入 NH₃ 后,桥连硝酸盐的吸收峰在 30 min 内消失,其他吸收峰强度减弱,这意味着催 化剂表面形成了对 NH₃-SCR 不利的稳定的惰性吸 附硝酸盐物种,其在吸附之后不反应,然后沉积于 表面,导致反应路径被切断,阻碍 NH₃-SCR 反应。 此外,在 5 min 时出现了两条 NH₃ 吸附于 Lewis 酸 位点的 N—H 键的对称弯曲振动吸收峰(1257 和 1177 cm⁻¹)。CeO₂上吸附的硝酸盐物种几乎不与 NH₃ 反应,表明 NH₃-SCR 反应在 CeO₂催化剂上的催化 机理是 Eley-Rideal 机理(E-R 机理)^[15]。

然而,在图 6b 的整个测试时间内,K/CeO₂催 化剂上的 NO_x物种的吸收峰强度几乎没有变化,表 明 K/CeO₂催化剂上的 NO_x物种是惰性物种,其在 吸附之后不反应,然后沉积于表面,导致反应路径 被切断。由于 K/CeO₂上吸附的硝酸盐物种不与 NH₃ 反应,表明 K⁺的添加没有改变 CeO₂反应机理,反应 机理仍然是 E-R 机理。

图 6c 中, CeP_{0.05}上吸附的 NO_x物种吸收峰随着 NH₃的引入而变弱。在 5 min 时, 1574 cm⁻¹处的双 齿硝酸盐的 N-O 键的不对称伸缩振动吸收峰消 失,在2min时,1304和1275 cm⁻¹处的单齿硝酸盐 的 N-O 键的不对称伸缩振动吸收峰消失。这些现 象表明,与CeO2相比,CeP0.05表面产生的硝酸盐物 种都与 NH₃物种反应,表明磷酸改性改变了催化机 理, NH₃-SCR 反应在 CeP₀₀₅ 催化剂上的机理是 Langmuir-Hinshelwood 机理(L-H 机理)^[15]。此外, 在 2 min 时出现了 Lewis 酸吸附的 NH₃物种的 N-H键 的对称弯曲振动吸收峰(1252 cm⁻¹)和 Brønsted 酸 吸附的 NH₃物种的 N—H 键的对称和不对称弯曲振 动吸收峰(1678 和 1440 cm⁻¹), 表明 CeP_{0.05} 具有很 好的 NH₃ 吸附能力。图 6d 中,因为引入了 K⁺,产生 了惰性的单齿硝酸盐的 N-O 键的不对称伸缩振动吸 收峰 (1527 cm⁻¹)^[37]。在 2 min 内, 1290 cm⁻¹ 处的 单齿硝酸盐的 N-O 键的不对称伸缩振动吸收峰与 NH3反应消失^[38],同时出现了 Lewis 酸吸附的 NH3 物种的 N—H 键的对称弯曲振动吸收峰(1220 cm⁻¹) 和 Brønsted 酸吸附的 NH₄物种的 N—H 键的不对称 弯曲振动吸收峰(1310 cm⁻¹)。因此,与 K/CeO₂相 比, K/CeP_{0.05}上的 NO_x物种更容易与 NH₃物种发生 反应,有利于 NH3-SCR 反应进行。此外,K⁺的添加 也没有改变 CeP0.05 的反应机理, K/CeP0.05 上的反应 机理仍然是 L-H 机理。

2.5 催化剂性能评价

图 7a 为 CeP_x (x=0.01、0.05、0.1、0.2、0.4) 和 CeO₂ 在 150~550 ℃下的 NO 转化率测试结果。 CeP_x 催化剂的 NO 转化率曲线走势和 HAN 等^[15]的 测试结果相同。随着温度的升高, NO 的转化率增 大,达到催化剂的 T_{90} 温度区间后,因为 NH₃ 过度 氧化,导致催化剂活性降低。CeO₂在整个温度区间 内的催化活性很低,在 400 ℃下的 NO 转化率最高 只有 52.5%。根据 NH₃-TPD 和原位红外的结果可知, 这是由于 CeO₂的表面酸性不足,NH₃ 的吸附与活化 过程较难发生^[7,31],而且在 CeO₂上的 NH₃和 NO 会 发生竞争吸附,吸附 NO 产生的惰性硝酸盐物种不 反应,然后沉积于表面,导致反应路径被切断,阻 碍 NH₃-SCR 反应^[10]。CeP_{0.05}具有较佳的 SCR 活性, CeP_{0.05}在250~500 ℃温度区间内,NO转化率在90% 以上,在温度为225 ℃时,CeP_{0.05}的NO转化率达 到了86.1%。这是由于磷酸化的CeO₂氧化还原性能 和表面酸性增强,有利于NH₃和NO的吸附与活化, 吸附的NH₃物种可以与吸附的硝酸盐物种反应,保 证了NH₃-SCR反应路径顺利进行。

- 图 7 催化剂的 NH₃-SCR 活性 (a); CeP_{0.05} 与 CeO₂ 催化 剂的 K⁺中毒前后活性对比(b); CeP_{0.05} 对 K⁺、Na⁺、 Ca²⁺和 Mg²⁺的耐受性 (c)
- Fig. 7 NH₃-SCR activity of catalysts (a); Activity comparison of $CeP_{0.05}$ and CeO_2 catalysts before and after K⁺ poisoning (b); Tolerance of $CeP_{0.05}$ to K⁺, Na⁺, Ca²⁺ and Mg²⁺ (c)

进一步探究了 K⁺对催化剂的影响(图 1b)。图 1b中,掺入钾后, CeO₂的活性变得很差,这是由于 K⁺和 Ce⁴⁺活性位点的结合造成催化剂表面酸位的减 少和氧化还原位点的削弱,而且吸附 NO 后会产生 惰性硝酸盐物种^[39]。而 K/CeP_{0.05}仍然具有较好的活 性,在 300~400 ℃下, NO 转化率大于 80%。这是 由于 K⁺中毒后 K/CeP_{0.05} 依然保存大量酸性位点。此 外, 生物质燃料燃烧产生的烟气中还含有大量的 Na⁺、Ca²⁺和 Mg²⁺等碱金属或碱土金属,因此也测 试了 CeP_{0.05} 对其的耐受性(图7c)。图7c中,毒害 作用大小排序为 K⁺>Mg²⁺>Na⁺>Ca²⁺,虽然碱金属和 碱土金属对 CeP_{0.05} 催化剂的催化活性有不同程度的 影响,但是失活机理相似,均减少了酸性位点数量, 降低了催化剂的还原性^[9,40]。

在评估 NH₃-SCR 催化剂的应用可行性时,催化 剂的稳定性和 SO₂ 耐受性是两个重要性能指标。因此,有必要测试 CeP_{0.05} 催化剂的稳定性和 SO₂ 耐受 性,结果见图 8。如图 8 所示,CeP_{0.05} 在 250 °C下 运行 24 h,NO 转化率保持不变。图 8 中的插图显 示了 CeP_{0.05} 催化剂对 SO₂ 的抗性结果。CeP_{0.05} 催化 剂在引入 SO₂之前,稳定催化了 2 h。在通入体积分 数 0.01% SO₂后,CeP_{0.05}上的 NO 转化率缓慢降低, 8 h 后 NO 转化率稳定在 80%左右。这可能是因为 SO₂ 可以与 CeO₂ 的活性成分反应生成 Ce₂(SO₄)₃ 和 Ce(SO₄)₂,阻碍了 Ce³⁺/Ce⁴⁺的转化。同时,NH₃也与 烟气中的 SO₃反应生成 NH₄HSO₄或(NH₄)₂SO₄,它们 会沉积在催化剂表面,导致催化剂失活^[41]。综上所 述,磷酸化 CeO₂ 在固定源的 NO_x 减排中表现出应 用的可行性。

图 8 CeP_{0.05} 催化剂在 250 ℃下的稳定性(插图为 CeP_{0.05} 催化剂在 300 ℃下的 SO₂ 耐受性)

Fig. 8 The stability of $CeP_{0.05}$ catalyst at 250 °C and tolerance to SO₂ at 300 °C (illustration)

3 结论

采用浸渍法制备了磷酸化 CeO₂,将其应用于 NH₃选择性催化还原 NO 反应。CeP_{0.05}催化剂表现 出最好的催化活性,在 250~500 ℃区间内,NO 转 化率在 90%以上;K⁺中毒后,CeP_{0.05}仍然具有较好 的活性,在 300~400 ℃区间内,NO 转化率大于 80%。在 SO₂耐受性实验中,在 300 ℃下,通入体 积分数 0.01% SO₂运行 8 h 后,CeP_{0.05} 的 NO 转化率 稳定在 80%左右。根据 XPS 结果可知,磷酸化可以

提高 Ce 物种的还原性并产生更多的化学吸附氧。当 K⁺沉积在磷酸化 CeO₂ 催化剂上时, K⁺将被诱导迁 移到表面与磷酸盐结合,从而阻止 K⁺攻击 Ce⁴⁺活性 位点,并显著提高抗 K⁺活性。根据 NH₃-TPD 和原 位红外结果可知,磷酸改性能够增强催化剂表面原 有的 Lewis 酸位点数量,并形成新的 Brønsted 酸位 点。保证了磷酸化 CeO2 在 K⁺中毒后仍然保持对 NH3 的吸附能力。CeO2催化剂在吸附 NO 后产生惰性硝 酸盐,惰性硝酸盐不和吸附的 NH₃物种反应,然后 沉积于表面,导致反应路径被切断,阻碍 NH₃-SCR 反应。NH₃-SCR 在 CeO₂催化剂上以 E-R 机制进行, NH3-SCR反应在CeP0.05上的机理是L-H机理。此外, K^+ 的添加没有改变催化剂的反应机理。磷酸化 CeO₂ 表现出优异的脱硝性能,有希望成为取代 V₂O₅-WO₃(MoO₃)/TiO₂的高效、耐碱、耐硫的工业脱硝催 化剂。

参考文献:

- [1] LIU X G (刘晓刚), FEI H T (费浩天), LIU Y Q (刘奕绮), et al. Denitrification performance of Cu(x)/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperature[J]. Fine Chemicals (精细化工), 2019, 36(9): 1845-1849.
- [2] GAO Z H (高梓寒), MU Y (穆杨), YANG R N (杨润农), et al. NH₃-SCR denitrification performance over bimetal exchanged Cu-Mn/SSZ-39 catalyst[J]. Fine Chemicals (精细化工), 2021, 38(8): 1621-1627, 1692.
- [3] LIU X S, JIANG P, CHEN Y, et al. A basic comprehensive study on synergetic effects among the metal oxides in CeO₂-WO₃/TiO₂ NH₃-SCR catalyst[J]. Chemical Engineering Journal, 2021, 421: 127833.
- [4] GRANGER P, SIAKA H W, UMBARKAR S B. What news in the surface chemistry of bulk and supported vanadia based SCRcatalysts: Improvements in their resistance to poisoning and thermal sintering[J]. Chemical Record, 2019, 19(9): 1813-1828.
- [5] GUO Y Y, XU X F, GAO H, et al. Ca-poisoning effect on V₂O₅-WO₃/TiO₂ and V₂O₅-WO₃-CeO₂/TiO₂ catalysts with different vanadium loading[J]. Catalysts, 2021, 11(4): 445.
- [6] ZHOU Y H, REN S, YANG J, et al. NH₃ treatment of CeO₂ nanorods catalyst for improving NH₃-SCR of NO[J]. Journal of the Energy Institute, 2021, 98: 199-205.
- [7] GENG Y, JIN K, MEI J, *et al.* CeO₂ grafted with different heteropoly acids for selective catalytic reduction of NO_x with NH₃[J]. Journal of Hazardous Materials, 2020, 382: 121032.
- [8] FANG D, HE F, XIE J L. Characterization and performance of common alkali metals and alkaline earth metals loaded Mn/TiO₂ catalysts for NO_x removal with NH₃[J]. Journal of the Energy Institute, 2019, 92(2): 319-331.
- [9] ZHU N, SHAN W, SHAN Y L, *et al.* Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO_x with NH₃[J]. Chemical Engineering Journal, 2020, 388: 124250.
- [10] ZHOU Z Z, LAN J M, LIU L Y, *et al.* Enhanced alkali resistance of sulfated CeO₂ catalyst for the reduction of NO_x from biomass fired flue gas[J]. Catalysis Communications, 2021, 149:106230.
- [11] CAI S X, XU T Y, WANG P L, et al. Self-protected CeO₂-SnO₂@SO₄²⁻/TiO₂ catalysts with extraordinary resistance to alkali and heavy metals for NO_x reduction[J]. Environmental Science & Technology, 2020, 54(19): 12752-12760.
- [12] KANG K K, YAO X J, CAO J, et al. Enhancing the K resistance of CeTiO_x catalyst in NH₃-SCR reaction by CuO modification[J].

Journal of Hazardous Materials, 2021, 402: 123551.

- [13] DU X S, GAO X, QU R Y, et al. The influence of alkali metals on the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of NO_x[J]. ChemCatChem, 2012, 4(12): 2075-2081.
- [14] JI J W, JING M Z, WANG X W, et al. Activating low-temperature NH₃-SCR catalyst by breaking the strong interface between acid and redox sites: A case of model Ce₂(SO₄)₃-CeO₂ study[J]. Journal of Catalysis, 2021, 39: 212-223.
- [15] HAN L P, CAI S X, GAO M, *et al.* Selective catalytic reduction of NO_x with NH₃ by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
- [16] WANG W, XIONG Z B, HE W F, et al. Influence of thiourea modification on the NH₃-SCR activity of CeO₂: Simultaneous tuning morphology and surface acidity[J]. Journal of the Energy Institute, 2021, 98: 322-333.
- [17] YI T, ZHANG Y B, LI J W, *et al.* Promotional effect of H₃PO₄ on ceria catalyst for selective catalytic reduction of NO by NH₃[J]. Chinese Journal of Catalysis, 2016, 37(2): 300-307.
- [18] LI M Y, GUO R T, HU C X, *et al.* The enhanced resistance to K deactivation of Ce/TiO₂ catalyst for NH₃-SCR reaction by the modification with P[J]. Applied Surface Science, 2018, 436: 814-822.
- [19] ZHANG P, WANG P L, CHEN A L, et al. Alkali-resistant catalytic reduction of NO_x by using Ce—O—B alkali-capture sites[J]. Environmental Science & Technology, 2021, 55(17): 11970-11978.
- [20] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO₂-TiO₂ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH₃[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 734-739.
- [21] MA S Y, GAO W Q, YANG Z D, et al. Superior Ce—Nb—Ti oxide catalysts for selective catalytic reduction of NO with NH₃[J]. Journal of the Energy Institute, 2021, 94: 73-84.
- [22] ZHOU G Y, MAITARAD P, WANG P L, et al. Alkali-resistant NOx reduction over SCR catalysts via boosting NH₃ adsorption rates by in situ constructing the sacrificed sites[J]. Environmental Science & Technology, 2020, 54(20): 13314-13321.
- [23] ZHANG Z P, LI R, WANG M J, et al. Two steps synthesis of CeTiO_x oxides nanotube catalyst: Enhanced activity, resistance of SO₂ and H₂O for low temperature NH₃-SCR of NO_x[J]. Applied Catalysis B: Environmental, 2021, 282: 119542.
- [24] JIANG Y, GAO W Q, BAO C Z, et al. Comparative study of Ce-Nb—Ti oxide catalysts prepared by different methods for selective catalytic reduction of NO with NH₃[J]. Molecular Catalysis, 2020, 496: 111161.
- [25] LIU Q, MI J X, CHEN X P, et al. Effects of phosphorus modification on the catalytic properties and performance of CuCeZr mixed metal catalyst for simultaneous removal of CO and NO_x[J]. Chemical Engineering Journal, 2021, 423: 130228.
- [26] WANG J P, YAN Z, LIU L L, et al. In situ DRIFTS investigation on the SCR of NO with NH₃ over V₂O₅ catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313: 660-669.
- [27] LIU Z M, ZHANG S X, LI J H, *et al.* Promoting effect of MoO₃ on the NO_x reduction by NH₃ over CeO₂/TiO₂ catalyst studied with *in situ* DRIFTS[J]. Applied Catalysis B: Environmental, 2014, 144: 90-95.
- [28] MA L, CHENG Y S, CAVATAIO G, et al. In situ DRIFTS and temperature-programmed technology study on NH₃-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2014, 156/157: 428-437.
- [29] ZHANG Y P, YUE X P, HUANG T J, et al. In situ DRIFTS studies of NH₃-SCR mechanism over V₂O₅-CeO₂/TiO₂-ZrO₂ catalysts for selective catalytic reduction of NO_x[J]. Materials, 2018, 11(8): 1307.
- [30] YU Y K, WANG J X, CHEN J S, et al. Promotive effect of SO₂ on the activity of a deactivated commercial selective catalytic reduction catalyst: An *in situ* DRIFTS study[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16229-16234.