功能材料

氮-碱耦合改性生物炭的制备及 CO₂ 吸附性能

慕佳琪¹, 方震华¹, 刘晓华^{1*}, 冯秀娟^{2*}

(1. 大连理工大学 能源与动力学院 海洋能源与节能教育部重点实验室, 辽宁 大连 116024; 2. 大连理 工大学 化工学院 智能材料化工前沿科学中心 精细化工国家重点实验室, 辽宁 大连 116024)

摘要:采用尿素对酸枣木屑进行改性得到了氮改性酸枣木基生物炭,然后通过 KOH 活化得到了氮-碱耦合改性 生物炭。通过正交实验考察了活化温度、活化时间和浸渍 KOH 质量分数对耦合改性生物炭综合吸附性能的影响。 在模拟电厂烟气环境下(CO₂体积分数 15%、吸附压力 0.1 MPa、吸附温度 25 ℃、进气流速 2.1 m/min)筛选 出综合吸附性能最优的氮-碱耦合改性生物炭,对其进行了 SEM、XRD、FTIR 和 BET 表征,探究了其在不同吸 附工况条件下(烟气温度、进气流速、CO₂体积分数)的 CO₂动态吸附特性的变化规律。结果表明,在活化温 度 1073 K、活化时间 1.5 h、浸渍 KOH 质量分数 30%条件下制备的氮-碱耦合改性生物炭(SAC-1073-1.5-K₃₀) 综合吸附性能最优,其 CO₂动态吸附容量(4.17 mmol/g)、再生特性(96.6%)和耐水性(95.4%)均表现良好; SAC-1073-1.5-K₃₀ 的 CO₂ 动态吸附容量与吸附温度、进气流速呈负相关,与 CO₂体积分数呈正相关。 SAC-1073-1.5-K₃₀ 在吸附温度 25 ℃、进气流速 8.40 m/min、CO₂体积分数 15%的最佳吸附工况下的 CO₂动态吸 附容量为 3.59 mmol/g,穿透时间 33.8 s。

关键词:耦合改性;生物炭;动态吸附;再生特性;耐水性;功能材料 中图分类号:TQ424;TK09 文献标识码:A 文章编号:1003-5214 (2025) 04-0771-09

Preparation and CO₂ adsorption performance of nitrogen-alkali coupling modified biochar

MU Jiaqi¹, FANG Zhenhua¹, LIU Xiaohua^{1*}, FENG Xiujuan^{2*}

(1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)

Abstract: Nitrogen-alkali coupling modified biochar was obtained from KOH activation on nitrogenmodified jujube wood-based biochar, which was prepared *via* urea modification of jujube wood chips. The influence of activation temperature, activation time, and impregnation KOH mass fraction on the comprehensive adsorption property of coupled modified biochar were analyzed *via* orthogonal experiments. The nitrogen-alkali coupled modified biochar with the best comprehensive adsorption performance was selected under a simulated power plant flue gas environment (CO₂ volume fraction 15%, adsorption pressure 0.1 MPa, adsorption temperature 25 °C, inlet flow rate 2.1 m/min), and characterized by SEM, XRD, FTIR and BET. Its CO₂ dynamic adsorption characteristic was studied under varying operating conditions (flue gas temperature, inlet flow rate, and CO₂ volume fraction). The results indicated that the nitrogen-alkali coupling modified biochar (SAC-1073-1.5-K₃₀) prepared under the conditions of activation temperature 1073 K, activation time 1.5 h and impregnated KOH mass fraction 30% exhibited the best comprehensive adsorption property with the highest CO₂ dynamic adsorption capacity (4.17 mmol/g), good regeneration characteristic (96.6%) and water resistance (95.4%). Furthermore, the CO₂ dynamic adsorption capacity of SAC-1073-1.5-K₃₀ was negatively correlated with adsorption temperature and inlet flow rate,

收稿日期: 2024-04-04; 定用日期: 2024-04-29; DOI: 10.13550/j.jxhg.20240276

作者简介: 慕佳琪 (1998—), 女, 硕士生, E-mail: mjq1206146170@163.com。联系人: 刘晓华 (1970—), 女, 教授, E-mail: lxh723@dult.edu.cn; 冯秀娟 (1973—), 女, 教授, E-mail: fengxiujuan@dult.edu.cn。

and positively correlated with CO_2 volume fraction. Under the optimal adsorption conditions of adsorption temperature 25 °C, inlet flow rate of 8.40 m/min, and CO_2 volume fraction of 15%, the CO_2 dynamic adsorption capacity was 3.59 mmol/g, and the penetration time was 33.8 s.

Key words: coupling modification; biochar; dynamic adsorption; regenerative characteristic; water resistance; functional materials

国际气候变化专门委员会(IPCC)预测,2100 年全球 CO₂含量较当前水平将提升约40%^[1-2],高含 量 CO₂会改变降雨模式,导致严重干旱和极端热浪 天气频发,带来两极的冰川融化以及海平面上升等 一系列问题^[3]。

燃煤电厂是主要的碳排放源之一,对其产生的 CO₂进行捕集研究对于碳减排和延缓全球变暖具有 重要意义^[4-6]。固体吸附法是电厂烟气碳捕集环节较 为实用的方法之一^[7-9],该法具有捕集装置紧凑、再 生能耗低和适用工况广泛等优势,其核心是开发兼 顾高吸附性能和低经济成本的绿色环保型吸附材料。

生物炭是一种具有价格优势的绿色环保型固体 吸附材料,其CO2吸附效果因生物炭前驱体的种类 和制备条件而异。WANG 等^[10]以 KOH 为活化剂, 咖啡渣为前驱体, 通过两步合成法制备了富氮微孔 生物炭,其最佳 CO_2 静态吸附容量为 1.18 mmol/g。 富氮微孔生物炭的吸附性能与 KOH 添加量呈正相 关,低于临界尺寸的窄微孔决定了 CO₂的吸附性能 (25 ℃时, 窄微孔孔径 ≤ 0.6 nm)。ZHANG 等^[11] 通过 CO₂-NH₃活化的方法改性大豆秸秆生物炭制备 了 CO₂-NH₃ 改性生物炭,其最佳 CO₂ 动态吸附容量 (2.02 mmol/g)高于 NH₃ 改性生物炭(1.80 mmol/g) 和 CO₂ 改性生物炭 (1.73 mmol/g)。CO₂-NH₃ 活化 法结合了 CO₂和 NH₃单独活化的优势,能够显著提 升 CO₂-NH₃ 改性生物炭的比表面积并且有助于引入 更多的含氮官能团。在较低温度(20 ℃)下, CO₂-NH₃改性生物炭的 CO₂吸附容量与微孔容积成 正比;而在较高温度(120 ℃)下,其CO2吸附容 量与含氮量成正比。YUE 等^[12]以椰壳为前驱体, 以尿 素为氮源, K₂CO₃ 为活化剂, 制备了多孔氮掺杂椰壳 生物炭,其最佳的 CO2 静态吸附容量为 3.71 mmol/g (25 ℃, 0.1 MPa), 最佳动态吸附容量为 0.84 mmol/g (25 ℃, 0.1 MPa)。氮掺杂椰壳生物炭的优异 CO₂ 吸附性能主要取决于丰富的氮含量和窄微孔之间的 协同作用。SIVADAS 等^[13]以尿素和蔗糖为原料,以 KOH 为活化剂,制备了富氮生物炭,其最佳 CO₂ 静态吸附容量为 4.3 mmol/g (25 ℃, 0.1 MPa), 且 其 CO2吸附容量与微孔容积和氮含量均呈正相关。 HAN 等^[14]以尿素为氮源,以甘蔗渣为前驱体制备了 甘蔗渣生物炭,其最佳CO2静态吸附容量为4.8 mmol/g (25 ℃, 0.1 MPa)。LIU 等^[15]以三聚氰胺为氮源,

以咖啡渣为前驱体,制备了咖啡渣生物炭,其最佳 静态吸附容量为 2.67 mmol/g (35 ℃,0.1 MPa)。 上述耦合改性生物炭的 CO₂吸附能力均与窄微孔结 构和高含氮量呈正相关。

目前, 生物炭吸附领域的研究热点集中于通过 简化、环保的化学或物理改性手段来调控生物炭内 部的多孔结构和表面性质,以提升生物炭的 CO2吸 附能力。KOH 在活化过程中起到制孔剂的作用, 会 促进生物炭内部形成丰富的微孔孔隙^[10,13];尿素改 性能够增加微孔率和氮掺杂含量,提高碳的电子密 度和碱性,从而利用路易斯酸碱相互作用将缺乏电 子的 CO2 固定在微孔表面[13]。而氮-碱耦合改性可以 实现上述改性方法的集优效果,进一步提升生物炭 的 CO2吸附性能。氮-碱耦合改性生物炭的 CO2吸附 能力主要取决于其内部窄微孔结构和含氮量[10,14-15], 发挥吸附主导作用的窄微孔的临界孔径因吸附条件 而异^[10]。但现有报道中关于生物炭的 CO₂动态吸附 特性和综合吸附性能的研究较少,且吸附过程中吸 附温度、进气流速〔<1.5 m/min,进气流速=进气流 量 $(m^{3}/min)/吸附柱进口横截面积(m^{2}),下同]$ 和 CO₂含量与实际电厂烟气环境的差距较大,研究 结果难以匹配工程应用的实际需求。

本文拟采用两步合成法制备氮-碱耦合改性酸 枣木基生物炭,以其 CO₂动态吸附容量、再生特性 和耐水性为目标,通过正交实验优化耦合改性生物 炭的制备条件,包括活化温度、活化时间和浸渍 KOH 质量分数;在模拟电厂烟气环境下筛选综合 吸附性能最优的耦合改性生物炭。改变烟气温度、 进气流速和 CO₂含量,探究吸附工况的变化对已筛 选的耦合改性生物炭的 CO₂动态吸附特性的影响, 以期为氮-碱耦合改性生物炭的工程实际应用提供 指导。

1 实验部分

1.1 材料、试剂与仪器

酸枣木屑(主要成分为木质素、纤维素和半糖等),河北苏悦农产品。

浓盐酸(质量分数 36%)、尿素(H₂NCONH₂)、 氢氧化钾(KOH), AR, 国药集团化学试剂有限公 司; 去离子水, 自制。 MGA5 型红外烟气分析仪,德国 MRU 公司; SU5000 型场发射扫描电子显微镜(SEM),日本 Hitachi 公司; ASAP 2460 型全自动比表面积及孔径 分析仪,美国 Micromeritics 仪器公司; Nicolet iS50 型傅里叶变换红外光谱仪(FTIR),美国 Thermo Fisher Scientific 公司; SmartLab 型 X 射线衍射仪 (XRD),日本 Rigaku 公司。

1.2 氮-碱耦合改性酸枣木基生物炭的制备

图 1 为两步法制备氮-碱耦合改性酸枣木基生物炭(SAC- T_{ac} - K_x)的流程示意图。

首先, 按照 m(酸枣木屑): m(尿素)=1:1, 将 酸枣木屑(粒径<18 目, 80 ℃下干燥 6 h)与尿素 在研磨钵中研磨均匀,随后置于管式炉中进行炭化 (773 K, 2 h),得到氮改性生物炭;将冷却到室温 的氮改性生物炭分别在不同质量分数(10%、20%、 30%)的 KOH 水溶液中搅拌 0.5 h, 浸渍 12 h。浸 渍后的氮改性生物炭经干燥(80 ℃,6h)后置于 管式炉内进行活化,活化温度(973、1073、1173 K), 活化时间(1.0、1.5、2.0 h)。待上述产物冷却到室 温后,用质量分数10%的稀盐酸和去离子水依次对 ,耦合改性生物炭进行洗涤,直至上层澄清溶液的 pH 为 7。随后,将上述混合液过滤,固体产物置于电 加热干燥箱内干燥(80 ℃,6h)后,得到氮-碱耦 合改性酸枣木基生物炭,记为 SAC- T_{ac} - K_x , SAC 表示酸枣木基生物炭, Tac 为活化温度, K; tac 为活 化时间, h; x%为浸渍用 KOH 溶液的质量分数。

1.3 正交实验设计

通过正交实验考察不同活化条件(活化温度、 活化时间、浸渍 KOH 质量分数)对耦合改性生物炭 的综合吸附性能(包括 CO₂动态吸附容量、再生特 性和耐水性)的影响。表1为正交实验设计表。

1.4 表征和测试

SEM 测试:低位二次电子(LEI)模式,工作

电流 20 μA,电子加速电压 5.0 kV。BET 测试:分子 探针为氮气,测试温度 77 K,脱气温度 200 ℃,脱气 时间 2 h。FTIR 测试:波数范围 4000~800 cm⁻¹,分 辨率 0.09 cm⁻¹。XRD 测试: 靶材 Cu, X 射线 λ= 0.1541 nm,管电压 40 V,管电流 40 mA,扫描速 率 2 (°)/min,扫描范围 5°~90°。

表 1 正交实验设计表 Table 1 Orthogonal experimental design table

		0	0
序号	活化温度/K	活化时间/h	浸渍 KOH 质量分数/%
1	1173	1.0	10
2	1173	1.5	20
3	1173	2.0	30
4	1073	1.0	20
5	1073	1.5	30
6	1073	2.0	10
7	973	1.0	30
8	973	1.5	10
9	973	2.0	20

1.5 CO2动态吸附容量测试

在自行设计的小型固定床变温吸附 CO₂实验系 统中进行 CO₂动态吸附容量测试,系统示意图如图 2 所示。此系统主要包括混合配气子系统、吸/脱附 子系统和测试及数据采集子系统。混合配气子系统 主要由 N₂气瓶、CO₂气瓶和混气瓶组成;吸/脱附子 系统主要由固体吸附柱和温控加热装置(吸附柱外 缠绕的加热带)组成;测试及数据采集子系统主要 由红外烟气分析仪和数据分析设备构成,红外烟气 分析仪在线监测吸附柱出口处的 CO₂含量。

模拟电厂烟气环境测试条件为: CO₂ 体积分数 15%,吸附压力 0.1 MPa,吸附温度 25 ℃,进气流 速 2.1 m/min。

1-CO₂气瓶; 2-N₂气瓶; 3-混气瓶; 4-减压阀; 5-质量流 量计; 6-温控加热装置; 7-固体吸附柱; 8-球形干燥管; 9-红 外烟气分析仪; 10-数据分析设备; 11~16-阀门

图 2 小型固定床变温吸附 CO₂实验系统示意图

Fig. 2 Schematic diagram of a small-scale fixed bed variable temperature CO₂ adsorption experimental system

1.6 性能参数及误差分析

1.6.1 性能参数

氮-碱耦合改性生物炭的 CO2 动态吸附性能的

主要评价指标为单位质量氮-碱耦合改性生物炭的 累积 CO₂ 动态吸附容量 (q, mmol/g),即吸附 τ_{ad} 时,单位质量的氮-碱耦合改性生物炭的 CO₂吸附总 容量,根据公式(1)计算^[16]。

$$q = \frac{Q}{22.4m} \int_0^{\tau_{\rm ad}} \left[(\varphi_{\rm in} - \varphi_{\rm out}) - (\varphi_{\rm in} - \varphi_{\rm kout}) \right] \,\mathrm{d}\,\tau \qquad (1)$$

式中: q 为累积 CO₂ 动态吸附容量, mmol/g; τ_{ad} 为 吸附时间, min; Q 为吸附柱的总进气流量, mL/min; m 为氮-碱耦合改性生物炭质量, g; φ_{in} 为吸附柱进 口处 CO₂ 体积分数, %; φ_{out} 为吸附柱出口处 CO₂ 体积分数, %; φ_{kout} 为空吸附柱出口处 CO₂ 体积分数, %; φ_{kout} 为空吸附柱出口处 CO₂ 体积分数, %。

1.6.2 误差分析

本文使用的主要测量仪器参数信息见表 2。为 减小实验误差,本文实验均进行 3 次平行实验并给 出数据误差棒。

表 2 主要测量仪器相关信息 Table 2 Related information of main measurement instruments

序号	设备	精确度	测量范围
1	电子天平	±1 mg	100~3000 mg
2	质量流量计(N ₂)	±10 mL	560~1000 mL
3	质量流量计(CO ₂)	±1 mL	33~100 mL
4	红外烟气分析仪	±0.3%	5%~15%
5	热电偶	±1 °C	25~60 ℃

经计算,吸附材料质量的最大相对误差为1%, N₂质量流量的最大相对误差为1.78%,CO₂质量流 量的最大相对误差为3.03%,烟气分析仪测出的气 体体积分数的最大相对误差为6%,温度的最大相对 误差为4%,CO₂动态吸附容量的最大相对误差为 ±8.08%。

1.7 再生特性测试

固体吸附法捕集 CO₂的工程应用中,再生特性 也是重要的评价指标之一。采用 N₂ 吹扫法实现氮-碱耦合改性生物炭的再生,再生实验依托图 2 的实 验系统进行。再生过程中,采用烟气分析仪实时监 测吸附柱出口处 CO₂体积分数变化,当吸附柱出口 处 CO₂体积分数为零时,可认为氮-碱耦合改性生物 炭完成再生过程。每组再生实验完成后需重复上述 吸附和再生实验,保证实验的吸附条件与初始吸附 实验完全相同。测试第 *M* 次吸附后氮-碱耦合改性 生物炭的 CO₂ 动态吸附容量 (q_M)和初次吸附的 CO₂ 动态吸附容量 (q_0),当 $q_M/q_0 \ge 90\%$ 时,*M* 的 数值记为稳定循环再生次数。以 *M*=10 时的 q_{10}/q_0 (%)来评价其再生性能。

1.8 耐水性测试

通过氮-碱耦合改性生物炭的 CO₂ 动态吸附容 量的变化来判断其耐水性好坏:将多孔纤维棉浸湿 在一定质量的水中,将其置于吸附柱的进气侧,使 进气吹扫含水的多孔纤维棉,从而增加进气中的水 分含量。含水工况下的 CO₂ 动态吸附容量(q_w)与 干燥气体工况的 CO₂ 动态吸附容量(q_d)之比 (q_w/q_d ,%),作为耐水性的衡量参数。测试条件 为:CO₂体积分数 15%,吸附压力为 0.1 MPa,吸附 温度为 25 ℃,进气流速 2.1 m/min,含水质量分数 35%。

1.9 吸附工况实验

1.9.1 吸附温度的影响

探究吸附温度(25、35、45、55、65 ℃)对 SAC- T_{ac} - K_x 的 CO₂动态吸附容量、穿透时间(在 穿透曲线中,以达到吸附柱进口处初始 CO₂体积分 数 10%的时间为穿透时间,即体积分数 1.5%线与穿 透体积分数线交点所对应的时间)的影响,吸附压 力 0.1 MPa,进气流速为 8.4 m/min,CO₂体积分数 15%。 1.9.2 进气流速的影响

探究进气流速(8.40、8.65、8.90、9.15、9.40 m/min) 对 SAC- T_{ac} - t_{ac} -K_x的 CO₂ 动态吸附容量、穿透时间的 影响,吸附温度 25 ℃,吸附压力 0.1 MPa, CO₂体 积分数 15%。

1.9.3 CO₂体积分数的影响

探究 CO₂体积分数(5.0%、7.5%、10.0%、12.5%、 15.0%)对 SAC-*T*_{ac}-*t*_{ac}-K_x的 CO₂动态吸附容量、穿 透时间的影响。吸附温度 25 ℃,吸附压力 0.1 MPa, 进气流速 8.4 m/min。

2 结果与讨论

2.1 正交实验结果分析

2.1.1 动态吸附实验结果

在模拟烟气环境下,通过正交实验对比不同制 备条件下氮-碱耦合改性生物炭的 CO₂ 动态吸附容 量,结果见表 3。

从表 3 可以看出, SAC-1073-1.5-K₃₀ 对 CO₂ 的 动态吸附容量最高,为4.17 mmol/g(序号5),制 备条件为:活化温度1073 K,活化时间1.5 h,浸渍 KOH 质量分数为 30%。通过对比各因素下的极差 (*R*),得到各因素对CO₂动态吸附容量的影响程度: 活化温度最大,活化时间次之,浸渍 KOH 质量分数 最小。

2.1.2 再生特性实验结果

表4为氮-碱耦合改性生物炭再生特性正交实验 结果。

表 3 动态吸附特性正交实验结果 Table 3 Orthogonal experimental results of dynamic adsorption

	characte	istics		
序号	活化温度/K	活化时间/h	浸渍 KOH 质量分	分数/% q/(mmol/g)
1	1173	1.0	10	3.28
2	1173	1.5	20	2.86
3	1173	2.0	30	2.97
4	1073	1.0	20	1.82
5	1073	1.5	30	4.17
6	1073	2.0	10	1.19
7	973	1.0	30	1.60
8	973	1.5	10	1.87
9	973	2.0	20	1.44
K_1	9.11	6.70	6.34	
K_2	7.18	8.90	6.12	
K_3	4.91	5.60	8.74	
k_1	3.04	2.23	2.11	
k_2	2.40	2.97	2.04	
k_3	1.64	1.87	2.91	
R	1.40	1.10	0.87	

表 4 再生特性正交实验结果

Table 4Orthogonal experimental results of regeneration
characteristics

序号	活化温度/K	活化时间/h	浸渍 KOH	质量分数/% q10/q0/%
1	1173	1.0	10	93.5
2	1173	1.5	20	95.6
3	1173	2.0	30	95.0
4	1073	1.0	20	95.3
5	1073	1.5	30	96.6
6	1073	2.0	10	99.0
7	973	1.0	30	99.0
8	973	1.5	10	95.7
9	973	2.0	20	98.0
K_1	284.1	287.8	288.2	
K_2	290.9	287.9	288.9	
K_3	292.7	292.0	290.6	
k_1	94.7	95.9	96.1	
k_2	97.0	96.0	96.3	
k_3	97.6	97.3	96.9	
R	2.9	1.4	0.8	

从表 4 可以看出,最高 q₁₀/q₀=99.0%,此时氮-碱耦合改性生物炭制备条件为:活化温度 1073 K, 活化时间 2.0 h,浸渍 KOH 质量分数为 10%,所制 备的氮-碱耦合改性生物炭为 SAC-1073-2.0-K₁₀;或 者活化温度 973 K,活化时间 1.0 h,浸渍 KOH 质量 分数为 30%,所制备的氮-碱耦合改性生物炭为 SAC-973-1.0-K₃₀。在活化温度 1073 K,活化时间 1.5 h, 浸渍 KOH 质量分数为 30%条件下制备的 SAC-10731.5-K₃₀,其 q₁₀/q₀=96.6%。通过对比各因素的 R,得
到各因素对 q₁₀/q₀的影响程度:活化温度最大,活
化时间次之,浸渍 KOH 质量分数最小。

2.1.3 耐水性实验结果

水蒸气是电厂烟气的组分之一,了解吸附过程 中水分对耦合改性生物炭的吸附性能的影响,对指 导其实际应用具有重要意义。潮湿环境下,大多数 多孔碳质材料对水分子有较强的亲和力,水分子达 到一定量后可能会逐渐在生物炭的孔隙结构表面聚 集成液膜,阻碍 CO₂与生物炭表面的吸附活性位点 结合,导致其 CO₂吸附容量降低^[17-19]。生物炭具有 疏水性的特性,通过限制水分子的竞争,促进吸附 材料对 CO₂的吸附作用^[19]。表 5 为氮-碱耦合改性生 物炭耐水性正交实验结果。

表 5 耐水性正交实验结果 Table 5 Orthogonal experimental results of water resistance

Tuole	5 Offilogol	iui experime	intui results of water re	Sistunee
序号	活化温度/K	活化时间/h	浸渍 KOH 质量分数/%	$q_{\rm w}/q_{\rm d}/\%$
1	1173	1.0	10	101.0
2	1173	1.5	20	97.1
3	1173	2.0	30	99.0
4	1073	1.0	20	97.0
5	1073	1.5	30	95.4
6	1073	2.0	10	95.8
7	973	1.0	30	95.3
8	973	1.5	10	94.0
9	973	2.0	20	97.5
K_1	297.1	293.3	290.8	
K_2	288.2	286.5	291.6	
K_3	286.8	292.3	289.7	
k_1	99.0	97.8	96.9	
k_2	96.1	95.5	97.2	
k_3	95.6	97.4	96.6	
R	3.4	2.3	0.6	

从表 5 可以看出,含湿气流中的水分对氮-碱耦 合改性生物炭的 CO₂ 动态吸附容量的影响不大, qw/qd=94.0%~101.0%,表明制备的耦合改性生物炭 具备良好的耐水性。这是因为,本文制备的耦合改 性生物炭的疏水性较强,水分子在生物炭表面会形 成珠状凝结,不易形成液膜^[20],削弱了水分对 CO₂ 动态吸附容量的降低。qw/qd=101.0%时氮-碱耦合改 性生物炭的制备条件为:活化温度 1173 K,活化时 间 1.0 h,浸渍 KOH 质量分数为 10%,所制备的氮-碱耦合改性生物炭为 SAC-1173-1.0-K₁₀。在活化温度 1073 K,活化时间 1.5 h,浸渍 KOH 质量分数为 30% 条件下制备的 SAC-1073-1.5-K₃₀,其 qw/qd=95.4%。 通过对比各因素的 R,得到各因素对耐水性的影响 程度:活化温度最大,活化时间次之,浸渍 KOH 质量分数最小。

图 3 为氮-碱耦合改性酸枣木基生物炭的各项性 能测试结果。

1#为 SAC-1173-1.0-K₁₀; 2#为 SAC-1173-1.5-K₂₀; 3#为 SAC-1173-2.0-K₃₀; 4#为 SAC-1073-1.0-K₂₀; 5#为 SAC-1073-1.5-K₃₀; 6#为 SAC-1073-2.0-K₁₀; 7#为 SAC-973-1.0-K₃₀; 8#为 SAC-973-1.5-K₁₀; 9# 为 SAC-973-2.0-K₂₀

图 3 氮-碱耦合改性生物炭各项性能 Fig. 3 Properties of nitrogen-base coupling modified biochar

现有文献中,关于生物炭综合吸附性能的评价 指标通常按照研究程度排序为 CO₂ 动态吸附容量、 再生特性和耐水性^[21]。结合文献中报道的吸附材料 性能指标的重要程度以及图 3 的结果,选取综合性 能优异的 SAC-1073-1.5-K₃₀ 作为后续变工况研究的 对象。

2.2 表征结果分析

2.2.1 SEM

图 4 为酸枣木屑和 SAC-1073-1.5-K₃₀ 的 SEM 图。

- 图 4 酸枣木屑(a、b)和 SAC-1073-1.5-K₃₀(c、d)在 不同放大倍数下的 SEM 图
- Fig. 4 SEM images of sour jujube wood (a, b) and SAC-1073-1.5-K₃₀ (c, d) at different magnifications

从图 4 可以看出,酸枣木屑具有良好的柱体空腔结构,空腔内表面分布有浅坑状圆孔(图 4a、b); SAC-1073-1.5-K₃₀呈现出孔隙大小不一、表面不规 则的块状、团簇型孔隙结构(图4c、d)。说明在氮 掺杂和 KOH 活化的共同作用下,氮-碱改性耦合生 物炭会形成尺寸更小的孔隙结构。

2.2.2 孔隙结构

图 5 为 SAC-1073-1.5-K₃₀ 的氮气吸/脱附等温曲 线;图 6 为 SAC-1073-1.5-K₃₀ 的孔径分布图。

图 5 SAC-1073-1.5-K₃₀的氮气吸/脱附等温曲线

Fig. 5 Nitrogen adsorption-desorption curve isotherms of SAC- 1073-1.5-K₃₀

图 6 SAC-1073-1.5-K₃₀的孔径分布曲线 Fig. 6 Pore size distribution of SAC-1073-1.5-K₃₀

从图 5 可以看出, SAC-1073-1.5-K₃₀的氮气吸/ 脱附等温线呈现出 I 型曲线特征, 证明 SAC-1073-1.5-K₃₀以微孔吸附为主。通过 BET 法计算, 其比表 面积为 1000 cm²/g。

从图 6 可以看出, SAC-1073-1.5-K₃₀具有丰富的 窄微孔-窄介孔分级碳结构, 微孔孔径集中于 0.6 nm, 表明其具有较高的 CO₂ 吸附潜力^[10]。

2.2.3 FTIR

图 7 为 SAC-1073-1.5-K₃₀ 的 FTIR 谱图。

从图 7 可以看出, 850 cm⁻¹处为 N—H 键的伸 缩振动峰, 1000 cm⁻¹处为 C—O/C—N 键的伸缩振 动峰, 1440 cm⁻¹处为 C—H/N—H 键的弯曲振动峰, 3440 cm⁻¹处为 N—H/O—H 键的拉伸振动峰。说明 氮-碱耦合改性酸枣木生物炭中引入了含氮和含氧 官能团,证明尿素和 KOH 成功实现对酸枣木屑的耦 合改性。

2.2.4 XRD

图 8 为 SAC-1073-1.5-K₃₀ 的 XRD 谱图。

4000 3600 3200 2800 2400 2000 1600 1200 800 波数/cm⁻¹

图 7 SAC-1073-1.5-K₃₀的 FTIR 谱图 Fig. 7 FTIR spectrum of SAC-1073-1.5-K₃₀

从图 8 可以看出, SAC-1073-1.5-K₃₀的 XRD 谱 图中显示出钾盐、钙盐、二氧化硅、氧化镁和含氮、 含钾结晶物的衍射峰, 证明对酸枣木屑的氮-碱耦合 改性成功。

2.3 吸附工况的影响分析

2.3.1 吸附温度的影响

图 9 为不同吸附温度下 CO₂ 体积分数穿透曲线;图 10 为不同吸附温度下穿透时间和 CO₂ 动态吸附容量。

从图 9 可以看出,在吸附初始阶段,吸附柱出口处 CO₂体积分数接近于零,说明该阶段的 CO₂几

乎全部被SAC-1073-1.5-K₃₀吸附。当吸附温度为25 ℃时,穿透时间约为36.9 s。随着吸附温度的增加, CO₂体积分数穿透曲线更加陡峭,吸附到达饱和的时间缩短,SAC-1073-1.5-K₃₀的CO₂穿透点出现越 来越早。当吸附温度为65 ℃时,穿透时间(32.8 s) 较25 ℃缩短了约11.1%。穿透现象发生后,吸附继 续进行直到吸附饱和,即吸附柱出口和入口处的 CO₂体积分数相等。

从图 10 可以看出,穿透时间随吸附温度的增加 而缩短, CO2 动态吸附容量随着温度的增加而逐渐 降低。当吸附温度为 25 ℃时, SAC-1073-1.5-K₃₀ 表现出最佳的CO2吸附性能。表明SAC-1073-1.5-K30 对 CO₂的吸附过程以物理吸附为主^[22]。这是因为, 温度的升高一方面会抑制放热的物理吸附进程向正 向进行;另一方面会加快 CO,分子的热运动,使其 从 SAC-1073-1.5-K₃₀ 微孔中脱离。加快的 CO₂ 分子 热运动会促进 CO2 分子在 SAC-1073-1.5-K30 内部的 扩散传输,从而缩短穿透时间,同时缩短 CO₂分子 在 SAC-1073-1.5-K₃₀ 内部的停留时间, 使其内部不 能充分地完成 CO2 的吸附过程,进而降低 CO2 动态 吸附容量。在吸附温度较低(低于 30 ℃)的条件 下, SAC-1073-1.5-K₃₀ 孔隙内部 CO₂ 的吸附速率大 于脱附速率, CO₂ 分子会被牢牢吸附到微孔中; 当 吸附温度升高到 35 ℃时, 脱附速率已经超过吸附 速率,会增加 CO2 向材料孔隙内扩散和吸附的难度; 当吸附温度在 35~65 ℃变化时, CO2 动态吸附能力 下降幅度较小,说明在该温度范围内, SAC-1073-1.5-K₃₀的动态吸附容量对温度的变化不敏感。文献 中大多数生物炭的动态吸附容量会随吸附温度的增 加而降低^[23],通常需要增加热量交换装置来降低吸 附温度以实现生物炭的最佳吸附性能。而 SAC-1073-1.5-K₃₀在实际应用中则可省略降温步骤,一定 程度上简化生物炭的吸附流程。

2.3.2 进气流速的影响

图 11 为不同进气流速下 CO₂体积分数穿透曲线。 图 12 为不同进气流速下穿透时间和 CO₂动态吸附容量。

图 11 不同进气流速条件下的 CO₂体积分数穿透曲线 Fig. 11 Penetration curves of CO₂ volume fraction at different inlet flow rates

从图 11 可以看出, 在吸附初始阶段, 吸附柱出 口处 CO₂体积分数接近于零, CO₂几乎全部被 SAC-1073-1.5-K₃₀ 完全吸附。当进气流速为 8.40 m/min 时, 穿透时间约为 36.8 s。随着进气流速的增加, SAC-1073-1.5-K₃₀ 的 CO₂ 穿透点出现越来越早, 当 进气流量为 9.40 m/min 时穿透时间(31.8 s)较进气 流速为 8.40 m/min 时缩短了约 13.6%。穿透现象发 生后, 吸附继续进行直到吸附饱和, 即吸附柱出口 和入口处的 CO₂体积分数相等。

图 12 不同进气流速条件下的穿透时间和 CO₂ 动态吸附 容量

从图 12 可以看出, SAC-1073-1.5-K₃₀的穿透时 间和动态吸附容量随着进气流速的增加而显著降 低。当进气流速为 8.40 m/min 时, SAC-1073-1.5-K₃₀ 有足够的时间充分与 CO₂接触,吸附过程更加充分, 因而动态吸附容量较高(3.4 mmol/g);当进气流速 >8.40 m/min 时, SAC-1073-1.5-K₃₀的动态吸附容量 明显降低,这是因为,过快的进气流速会产生更宽 的传质区,更容易发生穿透现象;而且过快的进气 流速减少了 CO₂和 SAC-1073-1.5-K₃₀的吸附位点之间的接触时间,造成生物炭不能充分地吸附 CO₂,高速气流的冲击可能会破坏 SAC-1073-1.5-K₃₀的孔道结构,削弱微孔吸附势对 CO₂的吸附作用,从而进一步降低 CO₂ 动态吸附容量。因此,SAC-1073-1.5-K₃₀的最佳进气流速为 8.40 m/min。

2.3.3 CO₂体积分数的影响

图 13 为不同 CO₂体积分数下 CO₂体积分数穿 透曲线。图 14 为不同 CO₂体积分数下穿透时间和 CO₂动态吸附容量。

图 13 不同 CO₂体积分数下 CO₂体积分数穿透曲线 Fig. 13 Penetration curves of CO₂ volume fraction at

图 14 不同 CO₂体积分数下穿透时间和 CO₂动态吸附容量 Fig. 14 Penetration time and CO₂ dynamic adsorption capacity at different CO₂ volume fractions

从图 13 可以看出,穿透时间随 CO₂体积分数的 增加而缩短。当 CO₂体积分数为 5.0%时,SAC-1073-1.5-K₃₀的穿透时间最长,为 41.0 s;当 CO₂体积分数 由 5.0%升高至 15.0%时,穿透时间(33.8 s)缩短约 17.6%。

从图 14 可以看出, CO₂ 动态吸附容量随 CO₂ 体积分数的增加而增大。当 CO₂体积分数为 5.0% 时, SAC-1073-1.5-K₃₀的 CO₂动态吸附容量最小, 为 1.67 mmol/g。当 CO₂体积分数由 5.0%升高至 15.0%时, CO₂动态吸附容量(3.59 mmol/g)提升约 115.0%。因此,最佳的 CO₂体积分数为 15.0%。这 是因为, SAC-1073-1.5-K₃₀ 吸附 CO₂ 过程中, CO₂ 分子主要在其孔隙内部以扩散的方式进行传输, CO₂体积分数差为扩散传输的驱动力。增加 CO₂体 积分数可以提高孔隙内的体积分数差,增强扩散传 输驱动力,从而提升吸附速率,促进动态吸附过程 中吸附容量的增加。

3 结论

本文以氮改性酸枣木基生物炭为前驱体,浸渍 不同质量分数的 KOH 为活化剂,采用先炭化后活化 的两步合成法成功制备了氮-碱耦合改性酸枣木基 生物炭。筛选出综合性能(CO₂ 动态吸附容量、再 生特性和耐水性)最优的氮-碱耦合改性生物炭并对 其变吸附工况下的 CO₂动态吸附特性进行研究。主 要结论如下:

(1)制备氮-碱耦合改性生物炭正交实验结果表 明,按照对 CO₂动态吸附容量、再生特性和耐水性 的影响程度排序,活化温度最大,活化时间次之, 浸渍 KOH 质量分数最小。在模拟烟气环境下(体积 分数 15% CO₂,吸附压力 0.1 MPa,吸附温度 25 ℃, 进气流速 2.1 m/min),活化温度 1073 K,活化时间 1.5 h,浸渍 KOH 质量分数 30%制备的氮-碱耦合改 性生物炭 SAC-1073-1.5-K₃₀的综合吸附性能最优, CO₂动态吸附容量(4.17 mmol/g)、再生特性(96.6%) 和耐水性(95.4%)均表现良好。

(2)在模拟烟气环境下,SAC-1073-1.5-K₃₀的最佳吸附工况为:吸附温度 25 ℃、进气流速
8.40 m/min、CO₂体积分数 15%,CO₂动态吸附容量为 3.59 mmol/g。

SAC-1073-1.5-K₃₀ 具有良好的 CO₂ 动态吸附性 能、再生特性和耐水性,其制备流程绿色环保,在 电厂烟气的 CO₂ 捕集过程中具有较好的应用前景。 本文得到的最佳吸附工况对大规模烟气中 CO₂ 捕集 技术的工业应用具有指导意义。

参考文献:

- MARESCAUX A, THIEU V, GARNIER J. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France[J]. Science of the Total Environment, 2018, 643: 247-259.
- [2] FIELD C B, BARROS V R, MASTRANDREA M D, et al. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. United Kingdom: Cambridge University Press, 2014.
- [3] DUTCHER B, FAN M, RUSSELL A G. Amine-based CO₂ capture technology development from the beginning of 2013-A review[J]. ACS Applied Materials & Interfaces, 2015, 7: 2137-2148.
- [4] LE Q C, MORIARTY R, ANDDRAW R M, et al. Global carbon budget 2015[J]. Earth System Science Data, 2015, 7: 349-396.

- [5] JEFFERSON M. IPCC fifth assessment synthesis report: "Climate change 2014: Longer report": Critical analysis[J]. Technological Forecasting and Social Change, 2015, 92: 362-363.
- [6] DOUGLAS A, COSTAS T. Separation of CO₂ from flue gas: A review[J]. Separation Science and Technology, 2011, 40: 321-348.
- [7] BAI H, YEH A C. Removal of CO₂ greenhouse gas by ammonia scrubbing[J]. Industrial & Engineering Chemistry Research, 1997, 36: 2490-2493.
- [8] KAWABUCHI Y, OKA H, KAWANO S, et al. The modification of pore size in activated carbon fibers by chemical vapor deposition and its effencts on molecular sieve selectivity[J]. Carbon, 1998, 36: 377-382.
- [9] AHMED A, PAITOON T, AMIT C, et al. Kinetics of the reactive absorption of carbon dioxide in high CO₂-loaded, concentrated aqueous monoethanolamine solutions[J]. Chemical Engineering Science, 2003, 58: 23-24.
- [10] WANG H F, LI X H, CUI Z Y, et al. Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO₂ capture and conversion[J]. Journal of Colloid and Interface Science, 2020, 578: 491-499.
- [11] ZHANG X, ZHANG S H, YANG H P, et al. Nitrogen enriched biochar modified by high temperature CO₂-ammonia treatment: Characterization and adsorption of CO₂[J]. Chemical Engineering Journal, 2014, 257: 20-27.
- [12] YUE L M, XIA Q Z, WANG L W, et al. CO₂ adsorption at nitrogen-doped carbons prepared by K₂CO₃ activation of ureamodified coconut shell[J]. Journal of Colloid & Interface Science, 2018, 511: 259-267.
- [13] SIVADAS D L, VIJAYAN S, RAJEEV R, et al. Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO₂ capture performance[J]. Carbon, 2016, 109: 7-18.
- [14] HAN J, ZHANG L, ZHAO B, et al. The N-doped activated carbon derived from sugarcane bagasse for CO₂ adsorption[J]. Industrial Crops and Products, 2019, 128: 290-297.
- [15] LIU S H, HUANG Y Y. Valorization of coffee grounds to biocharderived adsorbents for CO₂ adsorption[J]. Journal of Cleaner Production, 2018, 175: 354-360.
- [16] HU L (胡林). Experimental study on CO₂ adsorption and desorption characteristics based on porous media[D]. Chongqing: Chongqing University (重庆大学), 2009.
- [17] NUGENT P, GIANNOPOULOU E G, BURD S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO₂ separation[J]. Nature, 2014, 95: 80-84.
- [18] GAO F, LI Y K, BIAN Z J, et al. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO₂ capture in the presence of water[J]. Journal of Materials Chemistry, 2015, 3: 8091-8097.
- [19] YOU S M, OK Y S, CHEN S S, et al. A critical review on sustainable biochar system through gasification: Energy and environmental applications[J]. Bioresource Technology, 2017, 246: 242-253.
- [20] CEN Q G (岑旗钢). Research on the adsorption and separation of carbon dioxide from flue gas using activated carbon materials[D]. Hangzhou: Zhejiang University (浙江大学), 2017.
- [21] DISSANAYAKE P D, YOU S M, IGALAVITHANA A D, et al. Biochar-based adsorbents for carbon dioxide capture: A critical review[J]. Renewable & Sustainable Energy Reviews, 2020, 119: 1-14.
- [22] JIN Y R (金彦任), HUANG Z X (黄振兴). Adsorption and pore size distribution[M]. Beijing: National Defense Industry Press (国防工业 出版社), 2015.
- [23] MU J Q (慕佳琪), FANG Z H (方震华), ZHU H B (朱弘宝), et al. Research progress on solid adsorption materials for CO₂ capture in flue gas[J]. Fine Chemicals (精细化工), 2023, 40(9): 1857-1866.